Выполнить трисекцию угла - это значит разделить угол на три равные части. Сделать это, конечно, совсем нетрудно. Можно, например, измерить данный угол транспортиром, разделить найденное число градусов на три, а затем отложить посредством того же транспортира угол, содержащий полученное в частном число градусов. Но можно обойтись

и без транспортира, применяя метод «последовательных приближений»: построив произвольным радиусом дугу, для которой данный угол является центральным, возьмем на глаз хорду, соответствующую третьей части дуги, и отложим эту хорду последовательно три раза по дуге, начиная от одного из ее концов. Если после этого мы окажемся на другом конце дуги, задача решена. Если же, как это обыкновенно и бывает, мы не дойдем до другого конца дуги, или перейдем через него, то взятую нами на глаз хорду надо исправить, увеличив или уменьшив ее на одну треть расстояния от полученной точки до конца дуги, причем эту одну треть берем опять-таки на глаз. Эту исправленную хорду снова откладываем на дуге и в случае надобности вновь исправляем тем же способом. Каждая новая (исправленная) хорда будет давать все более точное решение, и, наконец, повторив операцию несколько раз, мы получим хорду, которая уложится на данной дуге практически ровно три раза, и трисекция угла будет выполнена. Конечно, эти два способа позволяют делить данный угол не только на три, но на любое число равных частей.

Однако, когда математики говорят о проблеме трисекции угла, они имеют в виду не эти весьма ценные в практическом отношении, но все же лишь приближенные способы, а точный способ, притом основанный на применении исключительно циркуля и линейки. Необходимо еще отметить, что имеется в виду использование одного лишь ребра линейки и что линейка должна служить только для проведения прямых (не допускается использование, например, масштабных делений), а циркуль - только для вычерчивания окружностей. Наконец, искомый способ должен давать решение задачи посредством конечного числа операций проведения прямых и окружностей. Последнее замечание очень существенно. Так, установив (по формуле суммы геометрической бесконечно убывающей прогрессии), что

можно предложить следующее решение задачи трисекции угла, требующее применения только линейки и циркуля: делим данный угол на 4 равные части, что, как известно, выполнимо посредством циркуля и линейки, а затем к полученному углу прибавляем поправку, равную четверти его самого, т. е. данного угла, потом вторую поправку,

равную первой, т. е. данного угла, и т. д. Точное решение задачи этим способом требует бесконечно большого числа операций (делений углов на 4 равные части), а потому не является тем классическим решением, какое имеют в виду, когда говорят о решении задачи трисекции угла и других задач на построение.

Итак, у нас будет идти речь о точном решении задачи трисекции угла посредством проведения конечного числа прямых и окружностей.

Для некоторых углов эта задача решается весьма просто. Так, для трисекции угла в 180° достаточно построить угол в 60°, т. е. угол равностороннего треугольника, а для трисекции углов в 90° и 45° - углы в 30° и 15°, т. е. половину и четверть угла равностороннего треугольника. Однако доказано, что наряду с бесконечным множеством углов, допускающих трисекцию, существует бесконечное же множество углов, не допускающих трисекции (в указанном выше смысле). Так, нельзя разделить на три равные части (посредством проведения конечного числа прямых и окружностей) ни угол в 60°, ни угол в 30°, ни угол в 15°, ни угол в 40°, ни угол в 120°, ни бесконечное множество других углов.

Теперь выясним, правилен ли следующий часто рекомендуемый способ деления произвольного угла на три равные части. Из вершины В произвольным радиусом проводим дугу окружности, которая пересечет стороны угла в точках (черт. 39). Делим хорду на три равные части и соединяем точки деления с В. Углы окажутся, будто бы, равными, и трисекция произвольного угла следовательно, будет выполнена так, как

требуется, т. е. посредством проведения конечного числа прямых и окружностей: деление отрезка на три равные части, которое здесь требовалось, выполнимо, как известно, именно так.

Предлагающие такое решение полагают, что равенство отрезков на которые мы разделили хорду влечет за собой и равенство дуг которые получатся, если продолжить и до пересечения с окружностью. Так ли это? Если эти дуги равны, то равны и углы (пусть каждый из них равен а), равны и стягивающие их хорды Но отрезок больше отрезка (это утверждение подсказывается чертежом, но ниже мы его докажем), а отрезок равен отрезку так как углы и равны:

Следовательно, при равенстве отрезков и отрезки и вопреки условию неравны, и предположение о равенстве и надо отвергнуть.

Опустив перпендикуляр из вершины В на хорду замечаем, что вся фигура симметрична относительно ВК: перегнув чертеж по мы приведем обе его половинки к совпадению. Отсюда заключаем, что отрезок III перпендикулярен к а в силу этого отрезок параллелен и треугольники и подобны, что дает: Но а потому и как мы и утверждали выше.

Деление угла пополам (рисунок 26, а). Из вершиныВ углаABC произвольным радиусом R 1 проводят дугу до пересечения ее со сторонами угла в точках М и N . Затем из точек M и N проводят дуги радиусом > R 1 до взаимного пересечения их в точке D . Прямая BD разделит данный угол пополам.

Деление угла на 4, 8 и т. д. равных частей осуществляется последовательным делением пополам каждой части угла (рисунок 26, б).

Рисунок 26

В том случае, когда угол задан сторонами, не пересекающимися в пределах чертежа, например AB иCD на рисунке 26, в, деление угла пополам выполняют так. На произвольном, но одинаковом расстоянииl от сторон угла проводят прямыеKL || AB иMN || CD и продолжают их до пересечения в точкеО . Полученный уголL ON делят пополам прямойOF . ПрямаяOF разделит пополам также и заданный угол.

Деление прямого угла на три равные части (рисунок 27). Из вершины прямого угла – точкиВ проводят дугу произвольным радиусомR до пересечения ее с обеими сторонами угла в точкахA иC . Тем же радиусомR из точекA иС проводят дуги до пересечения с дугойAC в точкахМ иN . Прямые, проведенные через вершину углаВ и точкиМ иN , разделят прямой угол на три равные части.

Рисунок 27

2.4 Деление окружности на равные части, построение правильных многоугольников

2.4.1 Деление окружности на равные части и построение правильных вписанных многоугольников

Для деления окружности пополам достаточно провести любой ее диаметр. Два взаимно перпендикулярных диаметра разделят окружность на четыре равные части (рисунок 28, а). Разделив каждую четвертую часть пополам, получают восьмые части, а при дальнейшем делении – шестнадцатые, тридцать вторые части и т. д. (рисунок 28, б). Если соединить прямыми точки деления, то можно получить стороны правильного вписанного квадрата (а 4 ), восьмиугольника (а 8 ) и т. д. (рисунок 28, в).

Рисунок 28

Деление окружности на 3, 6, 12 и т, д. равных частей, а также построение соответствующих правильных вписанных многоугольников осуществляют следующим образом. В окружности проводят два взаимно перпендикулярных диаметра1–2 и3–4 (рисунок 29 а). Из точек1 и2 как из центров описывают дуги радиусом окружностиR до пересечения с ней в точкахА, В, С иD . ТочкиA ,B ,1, С, D и2 делят окружность на шесть равных частей. Эти же точки, взятые через одну, разделят окружность на три равные части (рисунок 29, б). Для деления окружности на 12 равных частей описывают еще две дуги радиусом окружности из точек3 и4 (рисунок 29, в).

Рисунок 29

Построить правильные вписанные треугольник, шестиугольник и т. д. можно также с помощью линейки и угольника в 30 и 60°. На рисунке 30 приведено подобное построение для вписанного треугольника.

Рисунок 30

Деление окружности на семь равных частей и построение правильного вписанного семиугольника (рисунок 31) выполняют с помощью половины стороны вписанного треугольника, приблизительно равной стороне вписанного семиугольника.

Рисунок 31

Для деления окружности на пять или десять равных частей проводят два взаимно перпендикулярных диаметра (рисунок 32, а). РадиусOA делят пополам и, получив точкуВ , описывают из нее дугу радиусомR = BC до пересечения ее в точкеD с горизонтальным диаметром. Расстояние между точкамиC иD равно длине стороны правильного вписанного пятиугольника (а 5 ), а отрезокOD равен длине стороны правильного вписанного десятиугольника (а 10 ). Деление окружности на пять и десять равных частей, а также построение вписанных правильных пятиугольника и десятиугольника показаны на рисунке 32, б. Примером использования деления окружности на пять частей является пятиконечная звезда (рисунок 32, в).

Рисунок 32

На рисунке 33 приведен общий способ приближенного деления окружности на равные части . Пусть требуется разделить окружность на девять равных частей. В окружности проводят два взаимно перпендикулярных диаметра и вертикальный диаметрAB делят на девять равных частей с помощью вспомогательной прямой (рисунок 33, а). Из точкиB описывают дугу радиусомR =AB , и на пересечении ее с продолжением горизонтального диаметра получают точкиС иD . Из точекC иD через четные или нечетные точки деления диаметраAB проводят лучи. Точки пересечения лучей с окружностью разделят ее на девять равных частей (рисунок 33, б).

Рисунок 33

При построении необходимо учитывать, что такой способ деления окружности на равные части требует особенно большой точности выполнения всех операций.

В виде приложения мы можем теперь заняться решением одной уже раньше затронутой популярной математической проблемы, - а именно, задачи о делении любого угла на равных частей, в частности для - задачи о трисекции угла. Задача состоит в том, чтобы найти точное построение с помощью циркуля и линейки, которое давало бы деление любого угла на три равные части. Для целого ряда специальных значений угла легко можно найти такие построения. Я хочу познакомить вас с ходом мыслей в доказательстве невозможности трисекции угла в указанном смысле; при этом я прошу вас вспомнить доказательство невозможности построения правильного семиугольника с помощью циркуля и линейки. Как и в том доказательстве, мы сведем задачу к неприводимому кубическому уравнению и затем покажем, что его невозможно решить посредством одних только извлечений квадратного корня. Но только теперь в уравнение будет входить параметр - угол - тогда как раньше коэффициенты были целыми числами; в соответствии с этим теперь вместо числовой должна оказаться функциональная неприводимость.

Чтобы получить уравнение, дающее запись нашей проблемы, представим себе, что на положительной полуоси действительных чисел построен угол (рис. 41); тогда его вторая сторона пересечет окружность радиуса 1 в точке

Наша задача сводится к тому, чтобы найти такое независимое от величины угла построение, состоящее из конечного числа операций с циркулем и линейкой, которое всякий раз давало бы точку пересечения этой окружности со стороной угла т. е. точку

Это значение z удовлетворяет уравнению

и аналитический эквивалент нашей геометрической задачи состоит в том, чтобы решить это уравнение посредством конечного числа извлечений квадратных корней из рациональных функций от ибо это суть координаты точки w, из которых мы должны исходить при нашем построении.

Прежде всего надо убедиться в том, что уравнение (3) неприводимо с точки зрения теории функций. Правда, это уравнение не вполне подходит под тот тип уравнений, который мы имели в виду в предыдущих общих рассуждениях: вместо рационально входящего комплексного параметра w здесь рационально входят две функции - косинус и синус - действительного параметра Мы назовем здесь многочлен приводимым при условии, что он распадается на многочлены относительно , коэффициенты которых тоже являются рациональными функциями от Можно дать критерий понимаемой в этом смысле приводимости, вполне подобный прежнему. А именно, если в равенстве (3) пробегает все действительные значения, то пробегает в то же время окружность радиуса 1 в плоскости w, которой в силу стереографической проекции соответствует экватор на сфере w. Линия, лежащая над этой окружностью на римановой поверхности уравнения и одновременно пробегающая все три листа, при помощи (3) взаимно однозначно отображается на окружность радиуса 1 сферы и поэтому может быть до некоторой степени названа его «одномерным римановым изображением». Ясно, что подобным образом можно для всякого уравнения вида построить такое риманово изображение; для этого нужно взять столько экземпляров окружностей с радиусом 1 и с длиной дуги сколько корней имеет уравнение, и скрепить их соответственно связности корней.

Далее заключаем совершенно подобно прежнему, что уравнение только тогда могло бы быть приводимым, если бы его одномерное риманово изображение распадалось на отдельные части, но в данном случае это не имеет места, и потому неприводимость нашего уравнения (3) доказана.

Прежнее доказательство того, что всякое кубическое уравнение с рациональными численными коэффициентами, разрешимое посредством ряда извлечений квадратного корня, является приводимым, может быть дословно перенесено на настоящий случай неприводимого в функциональном смысле уравнения (3); стоит только вместо слов «рациональные числа» говорить каждый раз «рациональные функции от После этого является вполне доказанным наше утверждение о том, что невозможно выполнить посредством конечного числа операций (с циркулем и линейкой) деление на три части произвольного угла таким образом, все старания людей, занимающихся трисекцией угла, обречены на вечную бесплодность!

Теперь перейдем к рассмотрению несколько более сложного примера.


Построение и деление углов производят при помощи транспортира, однако многие углы можно построить и даже поделить при помощи угольников и циркуля. При помощи линейки и угольников с углами 30°, 60°, 90° и 45°, 45°, 90° можно построить любой угол, кратный 15°.

В теме о рейсшине на одном из показаны какие комбинации угольников используются при построении различных углов. Внимательно рассмотрите положение угольников при построении различных углов и используйте эти знания при выполнении чертежей. В учебной практике при выполнении чертежей использование транспортира приведено к минимуму.

Деление острого угла на две равные части

Деление острого угла на равные части выполняют при помощи циркуля и линейки. Нахождение биссектрисы угла рассмотрим на примере деления угла ВАС с вершиной в точке А. Через точку А, с произвольным радиусом R строим дугу до пересечения сторон угла в точках 1 и 2. Через точку 1 с этим же радиусом строим еще одну дугу, то же самое выполняем через точку 2.

Две дуги, пересекаясь между собой дают точку К, которую соединяем с точкой А. Прямая АК делит угол ВАС на две равные части и является ее биссектрисой.

Деление угла с удаленной вершиной на две равные части


Допустим, нам известны части АВ и CD сторон такого угла. Строим две параллельные прямые удаленные от сторон угла на равное расстоянию L. Расстояние следует выбрать таким, что выбранные прямые пересекались на поле листа, например в точке М. Далее выполняются все построения, что выполняли при делении острого угла на две равные части.

Полученная прямая MN делит данный угол на две равные части и является его биссектрисой.

Деление прямого угла на три равные части


Чтобы разделить прямой угол (например, угол BCD) на три равные части, из вершины угла (точки C) проводим дугу произвольного радиуса R до пересечения со сторонами угла в точках 1 и 2. Из точек 1 и 2, как из центров, радиусом R, проводим дуги, пересекающие дугу 1-2 в точках M и N, получим углы 1CM = MCN = NC2 = 30°.

Деление произвольно заданного угла на 3 равновеликие части. Трисекция угла

Россия. г. Пенза

Е. И. Терёшкин.

Возьмем прямой угол BAD (чертеж1) достроим его да квадрата ABCD, примем сторону квадрата за 1. Продолжим стороны BC и DC до величины равной. Поставим точки M и N. Соединим точки M и N с точкой A и наш прямой угол BAD разделен на 3 равновеликие части т.е.

Чертеж 1.

Но чтобы делить другие углы надо найти некоторую закономерность. Из точки C радиусом CM опишем окружность.

По теореме Пифагора находим. Из точки радиусом опишем окружность. Из точки через точку проводим линию до пересечения с большой дугой и ставим точку. , .

Диаметры большого круга. Проводим линию, она пересекает малый круг в точке. Из точки, через точку проводим линию до пересечения с большой дугой, ставим точку. Соединяем точки и.

По теореме Пифагора Из точки проводим линию. подобен, значит

Рассмотрим, т.к. этот угол вписанный и опирается на диаметр, а в этом треугольнике будет средняя линия, а значит По теореме косинусов, значит но, значит линия проходит через точку, т.е. через центр квадрата.

Далее чертим две пересекающиеся прямые, чтобы верхний и нижний вертикальные углы были тупыми (чертеж 3) и острыми (чертеж 4). В местах пересечения ставим точки. Из точек любым радиусом описываем окружность.

Чертеж 3. Чертеж 4.

Там где стороны верхнего тупого угла (чертеж 3) и острого (чертеж 4) пересекаются с дугой окружности ставим точки M и N. Проводим биссектрисы обоих тупых углов (чертеж 3) и острых углов (чертеж 4). Там где биссектрисы пересекаются с окружностями ставим точки и. Из точек радиусом описываем окружности. Там где биссектрисы пересекаются с нижней точкой окружности ставим точки F. Соединяем точки N с точками F. В местах пересечений линий NF с малой окружностью ставим точки Е. Из точек через точки Е проводим линии до пересечения с большой дугой и ставим точки. Соединяем точки М с точками. В местах пересечений линий М и F ставим точки О. От точек О в сторону точек F по биссектрисам откладываем расстояние СО. Получаем точки А. Из точек А // МС проводим линии до пересечения с продолжениями линий CN и ставим точки В. Из точек А // ВС проводим линии до пересечения с продолжениями линий МС и ставим точки D. Соединяем точки М с точками А и точки N с точками А. Если требуется разделить начальные углы MCN на три равновеликие части, то из точек С направляя вверх проводим линии параллельные AM и AN.

Теперь в местах пересечения АМ и ВС ставим точки Р, а в местах пересечения AN и СD ставим точки Q. Соединяем точки М с точками N. В местах пересечения хорды MN с биссектрисой А ставим точку. Треугольники АМ и АN равны по двум катетам. Треугольники АРС и АСQ равны, т.к. а АС - общая. Следовательно в обоих чертежах РС=СQ, а ВР=QD и АР=АQ. Далее вынесем оба наших ромба АВСD в отдельные чертежи.

Чертеж 5.

На чертеж 5 (а, б) вынесены ромбы АВСD с тупыми и острыми углами как и на чертежах 3 и 4. Только вместо букв Р и Q применим буквы М и N. Из доказанного ранее известно, что это ромбы, т.е. АВ=ВС=СD=АD, ВМ=ND, и АМ=АN.

Из точек А, радиусом АВ проводим дуги ВD, Из точек М, радиусом ВМ проводим дуги ВF до пересечения с дугами ВD. Из точек N радиусом DN проводим дуги DЕ до пересечения с дугами ВD. Соединяем точки Е с точками N, а точки F с точками М. ВМ=МF=EN=DN. Соединяем точки А с точками Е и F. Проводим хорды BF и ЕD,

Фигуры АВМF состоят из двух равнобедренных треугольников АВF и ВМF имеющих общее основание BF. Значит линии АМ делят эти фигуры на два равных треугольника АВМ и АМF, треугольники равны по трем сторонам.

Фигуры АЕND состоят из двух равнобедренных треугольников АЕD и ЕND, имеющих общее основание ЕD. Значит линии АN делят эти фигуры на два равных треугольника АЕN и АND, треугольники равны по трем сторонам.

Треугольники АВМ равны треугольникам AND по трем сторонам, значит и треугольники АМF равны треугольникам АЕN. Следовательно в обоих чертежах, а и фигуры АВМF равны фигурам AEND каждая в своем чертеже. Но точки Е на линиях АМ могут находиться, а могут и не находиться и точки F на линиях АN могут находиться, а могут и не находиться.

Рассмотрим на обоих чертежах по два четырехугольника: ромбы АВСD и фигуры АЕND. Сумма углов у обоих одинакова. а значит или

В обоих чертежах равны фигурам АЕND.

В результате получается:

Рассмотрим в обоих чертежах фигуры АВМF и ромбы АВСD.

следовательно

или Но где находятся точки Е и F пока не известно.

Чертеж 6.

На чертежах 6 (а, б) и 7 (а, б) указанны возможные варианты расположения точек Е и F относительно угла МАN.

Так как углы МАN симметричны относительно биссектрис ромбов АС, потому что, а, значит точки Е и F если и не находятся на линиях АМ и АN, то находятся на одинаковом расстоянии от этих линий. Иными словами и, если таковые углы существуют, то эти углы равны между собой. Если меньше то больше на 2 И наоборот если больше то меньше на 2

На чертеже 6 (а, б) рассмотрим (вместе равны фигуре АЕND) и ромб АВСD.

На чертеже 7 (а, б) рассмотрим и ромб АВСD.

Получится, что

Но и могут быть равны каким-либо углам, если.

Следовательно, наши углы NAF и EAM = 0, и точка Е находится на линии АМ, а точка F находится на линии AN и.

Угол больше развернутого этот способ не делит на три равновеликие части. Значит, его надо разделить пополам, любую из половинок разделить на три части и взять 2/3. Это и будет 1/3 делимого угла.


Close