Математические схемы описания технических систем

Общая классификация моделей систем

Все то на что направлена человеческая деятельность называется объектом . Определяя роль теории моделирования в процессе изучения объектов, а значит их моделей, необходимо отвлечься от их разнообразия и выделить общее, что присуще моделям различных по своей природе объектов. Этот подход привел к появлению общей классификации моделей систем.

Создаваемые модели систем классифицируются:

· по времени

* динамические модели: непрерывные, которые описываются дифференциальными уравнениями; дискретно–непрерывные (разностные), описываются разностными уравнениями; вероятностные, построенные на событиях – модели теории массового обслуживания;

* дискретные модели – автоматы;

· по признаку случайности :

* детерминированные – модели отражающие процессы, в которых отсутствуют всякие случайные воздействия;

* стохастические – модели отражающие вероятностные процессы и события;

· по назначению :

· по виду обрабатываемой информации :

* информационные: - справочно-информационные;

Информационно -советующие;

Экспертные;

Автоматические;

* физические модели: - натурные (плазма);

Полунатурные (аэродинамические трубы);

* имитационные модели;

* интеллектуальные модели;

* семантические (логические) модели;

Перейдем к рассмотрению основных видов математических схем .

1.3.1. Непрерывно–детерминированные модели (D – схемы)

Математические схемы такого вида отражают динамику процессов, протекающих во времени в системе. Поэтому они называются D– схемы. Частным случаем динамических систем являются системы автоматического управления .

Линейная автоматическая система описывается линейным дифференциальным уравнением вида

где x(t) - задающее воздействие или входная переменная системы; y(t) - состояние системы или выходная переменная; - коэффициенты; t - время.

На рис.1 представлена укрупненная функциональная схема системы автоматического управления, где – сигнал ошибки; - управляющее воздействие; f(t) - возмущающее воздействие. Данная система основана на принципе отрицательной обратной связи, так как для приведения выходной переменной y(t) к ее заданному значению используется информация об отклонении между ними. По ней можно разработать структурную схему и математическую модель в виде передаточной функции или в виде дифференциального уравнения (1.1), в котором для простоты предполагается, что точки приложения возмущающих воздействий совпадают с входом системы.



Рис.1.1. Структура системы автоматического управления

Непрерывно- детерминированные схемы (D- схемы) выполняются на аналоговых вычислительных машинах (АВМ).

1.3.2. Дискретно–детерминированные модели (F – схемы)

Основным видом дискретно–детерминированных моделей является конечный автомат.

Конечным автоматом называют дискретный преобразователь информации, способный под воздействием входных сигналов переходить из одного состояния в другое и формировать сигналы на выходе. Это автомат с памятью . Для организации памяти в описание автомата вводят автоматное время и понятие состояние автомата .

Понятие «состояние» автоматаозначает, что выходной сигнал автомата зависит не только от входных сигналов в данный момент времени, но и учитывает входные сигналы, поступающие ранее. Это позволяет устранить время как явную переменную и выразить выходные сигналы как функцию состояний и входных сигналов.

Всякий переход автомата из одного состояния в другое возможен не ранее, чем через дискретный интервал времени. Причем сам переход считается, происходит мгновенно, то есть не учитывают переходные процессы в реальных схемах.

Существует два способа введения автоматного времени по которому автоматы делятся на синхронные и асинхронные .

В синхронных автоматах моменты времени, в которых фиксируются изменения состояний автомата, задаются специальным устройством – генератором синхросигналов. Причем сигналы поступают через равные интервалы времени – . Частота тактового генератора выбирается такой, чтобы любой элемент автомата успел закончить свою работу до появления очередного импульса.

В асинхронном автомате моменты перехода автомата из одного состояния в другое заранее не определены и зависят от конкретных событий. В таких автоматах интервал дискретности является переменным.

Также существуют детерминированные и вероятностные автоматы.

В детерминированных автоматах поведение и структура автомата в каждый момент времени однозначно определены текущей входной информацией и состоянием автомата.

В вероятностных автоматах они зависят от случайного выбора.

Абстрактно конечный автомат можно представить как математическую схему (F – схему), которая характеризуется шестью видами переменных и функций:

1) конечное множество x(t) входных сигналов (входной алфавит);

2) конечное множество y(t) выходных сигналов (выходной алфавит);

3) конечное множество z(t) внутренних состояний (алфавит состояний);

4) начальное состояние автомата z 0 , ;

5) функция переходов автомата из одного состояния в другое;

6) функция выходов автомата.

Абстрактный конечный автоматимеет один вход и один выход. В каждый дискретный момент времени t=0,1,2,... F– автомат находится в определенном состоянии z(t) из множества Z – состояний автомата, причем в начальный момент времени t=0 он всегда находится в начальном состоянии z(0)=z 0 . В момент t , будучи в состоянии z(t) , автомат способен воспринять на входном канале сигнал и выдать на выходном канале сигнал , переходя в состояние

Абстрактный конечный автомат реализует некоторое отображение множества слов входного алфавита X на множество слов выходного алфавита Y , то есть, если на вход конечного автомата, установленного в начальное состояние z 0 , подавать в некоторой последовательности буквы входного алфавита , которые составляют входное слово, то на выходе автомата будут последовательно появляться буквы выходного алфавита образуя выходное слово.

Следовательно, работа конечного автомата происходит по следующей схеме: на каждом t – ом такте на вход автомата, находящегося в состоянии z(t) , подается некоторый сигнал x(t) , на который автомат реагирует переходом на (t+1)– ом такте в новое состояние z(t+1) и выдачей некоторого выходного сигнала.

В зависимости от способа определения выходного сигнала синхронные абстрактные конечные автоматы подразделяются на два типа:

F – автомат первого рода, также называется автомат Мили :

F – автомат второго рода:

Автомат второго рода, для которого

называется автомат Мура – функция выходов не зависит от входной переменной x(t) .

Чтобы задать конечный F – автомат, необходимо описать все элементы множества .

Существует несколько способов задания работы F – автоматов среди которых наибольшее применение нашли табличный, графический и матричный.

1.3.3. Дискретно – непрерывные модели

Процессы в линейных импульсных и цифровых системах автоматического управления описываются дискретно – разностными уравнениями вида:

где x(n) –решетчатая функция входного сигнала; y(n) –решетчатая функция выходного сигнала, которая определяется решением уравнения (1.2); b k – постоянные коэффициенты; – разность к – го порядка; t=nT , где nT n– ый момент времени, T – период дискретности (в выражении (1.2) он условно принят за единицу).

Уравнение (1.2) можно представить в другом виде:

Уравнение (1.3) представляет собой рекуррентное соотношение, которое позволяет вычислить любой (i+1) –й член последовательности по значениям предыдущих её членов i,i-1,... и значению x(i+1).

Основным математическим аппаратом моделирования цифровых автоматических систем является Z– преобразование, которое базируется на дискретном преобразовании Лапласа. Для этого необходимо найти импульсную передаточную функцию системы, задаться входной переменной и, варьируя параметрами системы, можно найти лучший вариант проектируемой системы.

1.3.4. Дискретно – стохастические модели (Р - схемы)

К дискретно – стохастической модели относится вероятностный автомат . В общем, виде вероятностный автомат является дискретным потактным преобразователем информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статистически. Поведение автомата зависит от случайного выбора.

Применение схем вероятностных автоматов имеет важное значение для проектирования дискретных систем, в которых проявляется статистически закономерное случайное поведение.

Для Р – автомата вводится аналогичное математическое понятие, как и для F – автомата. Рассмотрим множество G, элементами которого являются всевозможные пары (x i ,z s) , где x i и z s элементы входного подмножества X и подмножества состояний Z соответственно. Если существуют две такие функции и , что с их помощью осуществляется отображение и , то говорят, что определяет автомат детерминированного типа.

Функция переходов вероятностного автомата определяет не одно конкретное состояние, а распределение вероятностей на множестве состояний

(автомат со случайными переходами). Функция выходов также есть распределение вероятностей на множестве выходных сигналов (автомат со случайными выходами).

Для описания вероятностного автомата введем в рассмотрение более общую математическую схему. Пусть Ф – множество всевозможных пар вида (z k ,y j) , где y j – элемент выходного подмножества Y . Далее потребуем чтобы любой элемент множества G индуцировал на множестве Ф некоторый закон распределения следующего вида:

элементы из Ф...

где – вероятности перехода автомата в состояние z k и появления на выходе сигнала y j , если он был в состоянии z s и на его вход в этот момент времени поступал сигнал x i .

Число таких распределений, представленных в виде таблиц равно числу элементов множества G. Если обозначить это множество таблиц через В, то тогда четверку элементов называют вероятностным автоматом (Р – автоматом). При этом .

Частным случаем Р– автомата, задаваемого как являются автоматы, у которых либо переход в новое состояние, либо выходной сигнал определяются детерминировано(Z– детерминированный вероятностный автомат, Y–- детерминированный вероятностный автомат соответственно).

Очевидно, что с точки зрения математического аппарата задание Y – детерминированного Р – автомата эквивалентно заданию некоторой марковской цепи с конечным множеством состояний. В связи с этим аппарат марковских цепей является основным при использовании Р– схем для аналитических расчетов. Подобные Р– автоматы используют генераторы марковских последовательностей при построении процессов функционирования систем или воздействий внешней среды.

Марковские последовательности , согласно теореме Маркова, –это последовательность случайных величин, для которой справедливо выражение

где N – количество независимых испытаний; D–- дисперсия.

Такие Р– автоматы (Р– схемы) могут быть использованы для оценки различных характеристик исследуемых систем как для аналитических моделей, так и для имитационных моделей с использованием методов статистического моделирования.

Y – детерминированный Р– автомат можно задать двумя таблицами: переходов (табл.1.1) и выходов (табл.1.2).

Таблица 1.1

Где P ij – вероятность перехода Р– автомата из состояния z i в состояние z j , при этом .

Таблицу 1.1 можно представить в виде квадратной матрицы размерности . Такую таблицу будем называть матрицей переходных вероятностей или просто матрицей переходов Р- автомата , которую можно представить в компактной форме:

Для описания Y– детерминированного Р–автомата необходимо задать начальное распределение вероятностей вида:

Z... z 1 z 2 ... z k-1 z k
D... d 1 d 2 ... d k-1 d k

где d k– вероятность того, что в начале работы Р– автомат находится в состоянии z k , при этом .

И так, до начала работы Р– автомат находится в состоянии z 0 и в начальный (нулевой) такт времени меняет состояние в соответствии с распределением D. После этого смена состояний автомата определяется матрицей переходов Р. С учетом z 0 размерность матрицы Р р следует увеличить до , при этом первая строка матрицы будет (d 0 ,d 1 ,d 2 ,...,d k) , а первый столбец будет нулевым.

Пример. Y– детерминированный Р– автомат задан таблицей переходов:

Таблица 1.3

и таблицей выходов

Таблица 1.4

Z z 0 z 1 z 2 z 3 z 4
Y

С учетом таблицы 1.3 граф переходов вероятностного автомата представлен на рис.1.2.

Требуется оценить суммарные финальные вероятности пребывания этого автомата в состоянии z 2 и z 3 , т.е. когда на выходе автомата появляются единицы.

Рис. 1.2. Граф переходов

При аналитическом подходе можно использовать известные соотношения из теории марковских цепей и получить систему уравнений для определения финальных вероятностей. Причем начальное состояние можно не учитывать в виду того, что начальное распределение не оказывает влияние на значения финальных вероятностей. Тогда таблица 1.3 примет вид:

где – финальная вероятность пребывания Y– детерминированного Р– автомата в состоянии z k .

В результате получаем систему уравнений:

К данной системе следует добавить условие нормировки:

Теперь решая систему уравнений (1.4) совместно с (1.5), получаем:

Таким образом, при бесконечной работе заданного автомата на его выходе будет формироваться двоичная последовательность с вероятностью появления единицы, равной: .

Кроме аналитических моделей в виде Р– схем можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.

1.3.5. Непрерывно–стохастические модели (Q– схемы)

Такие модели рассмотрим на примере использования в качестве типовых математических схем систем массового обслуживания, которые называют Q– схемами . Такие Q– схемы применяются при формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания .

К процессам обслуживания можно отнести: потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов сети ЭВМ. Характерным признаком для функционирования таких систем или сетей является случайное появление заявок на обслуживание. Причем в любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания и, собственно, сам процесс обслуживания заявки. Представим это в виде некоторого i-го прибора обслуживания П i (рис.1.3), состоящего из накопителя заявок Н i , в котором может находится одновременно заявок; К i – канал обслуживания заявок.

На каждый элемент прибора П i поступают потоки событий, в накопитель Н i поток заявок , на канал К i – поток обслуживания И i .

Рис.1.3. Прибор обслуживания

Потоки событий могут быть однородными , если он характеризуется только последовательностью поступления этих событий (), или неоднородными , если он характеризуется набором признаков события, например таким набором признаков: источник заявок, наличие приоритета, возможность обслуживания тем или иным типом канала и т.п.

Обычно при моделировании различных систем применительно к каналу К i можно считать, что поток заявок на входе К i образует подмножество неуправляемых переменных, а поток обслуживания И i – образует подмножество управляемых переменных.

Те заявки, которые по различным причинам не обслуживаются каналом К i , образуют выходной поток У i .

Эти модели можно отнести к оптимальным стохастическим моделям.

Во многих случаях при построении модели не все условия заранее известны. Эффективность нахождения модели здесь будет зависеть от трех факторов:

Заданных условий х 1 , x 2 ,...,x n ;

Неизвестных условий y 1 ,y 2 ,...,y k ;

Зависящих от нас факторов и 1 ,и 2 ,...,и m , которые необходимо найти.

Показатель эффективности решения такой задачи имеет вид:

Наличие неизвестных факторов y i переводит задачу оптимизации в задачу о выборе решения в условиях неопределенности. Задача становится чрезвычайно сложной.

Особенно задача осложняется для случаев, когда величины y i не обладают статистической устойчивостью, то есть неизвестные факторы y i нельзя изучить с помощью статистических методов. Их законы распределения либо не могут быть получены, либо вовсе не существуют.

В этих случаях рассматриваются комбинации всевозможных значений Y:таким образом, чтобы получить как «наилучшее», так и «наихудшее» сочетания значений переменных y i .

Тогда в качестве критерия оптимизации рассматривается.

При создании моделей технологических операций и процессов приходится сталкиваться с такими случаями, когда моделируемое яв- ление не удается описать в виде детерминированных функциональ- ных связей. Причиной этому могут быть как сильное влияние различ- ных случайных возмущений, так и принципиально случайный характер самого явления, т.е. интересующее нас явление не искажено помехами, а вызвано совместным действием различных случайных факторов.

Наиболее типичным случайным явлением являются отказы обо- рудования и элементов автоматики в период их нормальной эксплуа-

тации. С одной стороны, опыт показывает, что рано или поздно, с

большей или меньшей интенсивностью отказывают большинство де- талей или электронных узлов, а с другой - совершенно невозможно предсказать точно момент времени, когда произойдет отказ.

Очевидно, можно говорить лишь о вероятности наступления од- ного или нескольких отказов в определенном интервале времени либо

o том, что время безотказной работы (число отказов равно нулю) не

превысит определенного значения.

Аналогичная постановка вопроса справедлива применительно к погрешностям измерения параметра. В силу целого ряда случайных

факторов невозможно предсказать, какова будет погрешность при

конкретном измерении, хотя ясно, что она не бывает больше какого- то значения и что существует понятие средней погрешности по конечной совокупности измерений. Случайным можно также представить отклонение параметров заготовок и даже готовых деталей от нормативных. При этом для годных изделий эти отклонения находятся в пределах допусков, для бракованных превышают допуск.

В рассмотренных случаях, особенно при взаимодействии и взаи- мовлиянии различных случайных факторов, поведение интересующе- го нас параметра и его значение не могут быть представлены как функция взаимодействия средних значений определяющих его факто- ров. Конечный результат должен быть получен в виде случайной ве- личины как результат взаимодействия случайных факторов в повто- ряющихся реализациях процесса. Только после статистической обработки полученных результатов можно говорить об оценке сред- него значения и разброса. Такая модель процесса в отличие от детер- минированной называется стохастической (случайной).

Стохастические модели также отражают объективные законо- мерности, присущие данному процессу, однако представление их в

виде детерминированных функций либо невозможно, либо нецелесо-

образно на данном этапе. Для их представления используется аппарат случайных функций, когда случайные явления и процессы характери- зуются случайными величинами, подчиняющимися вероятностным законам.


Статистически устойчивые (достоверные) результаты модели- рования случайных явлений и процессов могут быть получены лишь по достаточно большому числу реализаций (опытов), причем, чем больше разброс значений случайной величины, тем большее число реализаций требуется. Реально такое моделирование возможно лишь с использованием быстродействующих ЭВМ.

Для этой цели ЭВМ должна иметь возможность:

Генерировать последовательность случайных чисел с за- данными законом распределения и параметрами (матема-

тическое ожидание, дисперсия и т.п.);

Вычислять вероятность наступления случайного события, подчиняющегося определенному закону, в заданном ин-

тервале времени;

Воспроизводить факт наступления случайного события и т.д.

Во всех указанных случаях необходимо знать закон распределе- ния случайной величины или события и его параметры. Необходимые

для этого данные получают, проводя натурный эксперимент по реализации подобного явления. Статистическая обработка такого эксперимента позволяет не только выявить статистические закономерности случайного явления, но и оценить достоверность результатов в зависимости от объема эксперимента (числа реализаций).

Начальным этапом обработки экспериментальных данных явля- ется построение вариационного ряда и гистограммы. Для этого фик- сируется ряд значений дискретной случайной величины х (например, число бракованных деталей за одну смену) в течение п смен. Сово- купность значений называется выборкой или статистическим рядом.

Располагая разные измеренные значения в порядке возрастания, получаем вариационный ряд. Далее составляем таблицу частот, в ко- торой каждому значению из вариационного ряда хi, ставится в соот- ветствие экспериментальная частота наблюдавшегося явления:




Число смен, когда было хi , бракованных деталей;

Общее число смен, когда проводились наблюдения.


Если случайная величина непрерывна (погрешность измерения), то ее экспериментальные значения представляются в виде интерваль-


ной таблицы частот, в которой указаны интервалы


сi ci +1 значений


случайной величины, а также, как и для дискретной величины, часто-

ты попадания ее в этот интервал




- число значений случайной величины, не выходящих


за пределы i -го интервала;


величины.


Общее число зафиксированных значений случайной


По данным интервальной таблицы строят гистограмму, пред- ставляющую собой ряд сопряженно-расположенных на горизонталь- ной оси прямоугольников, основание которых равно интервалу


сi ci +1


значений случайной величины, а площадь равна



Построив графики по данным таблицы частот или гистограммы, можно по их виду предложить гипотезу о соответствии данных опыта тому или иному закону. После этого проводится проверка степени со- ответствия экспериментальных данных предполагаемому закону. Проверка производится с использованием различных критериев со- гласия. Наиболее распространенным является критерий χ2 (хи- квадрат) Пирсона.

Стохастическая модель - это способ финансового моделирования, в котором одна или более переменных в модели имеют стохастическую природу, то есть представляют собой случайный процесс. Следовательно, решением уравнения также оказываются стохастические процессы. В основе стохастического уравнения лежит Броуновское движение.

Он широко используется для прогнозирования того, как фондовые рынки, облигации и свитки будет действовать в будущем. Статистическое моделирование является средством оценки вероятности исходов и предсказания условий в различных ситуациях. Используемые случайные величины, как правило, ограничены историческими данными, такими как последние рыночные доходы. К примеру, при использовании модели в оценке портфеля, несколько моделирований представления портфеля делаются на основе вероятностных распределений отдельных доходностей акций. Статистический анализ результатов может помочь определить вероятность того, что портфель будет предоставлять нужную производительность. Главная цель статистического исследования - узнать свойства популяции по свойствам выборки. Например, сделать прогноз - это значит узнать вероятностное распределение будущих наблюдений популяции по выборке значений из прошлого. Чтобы сделать это, нам необходимо уметь описывать стохастические процессы и временные ряды и знать классы стохастических моделей, пригодных для описания встречающихся на практике ситуаций. Сторонники стохастического моделирования утверждают, что случайность является фундаментальным характеристикой финансовых рынков.

Статистическое моделирование обеспечивает структурированный способ изучения портфеля, с учетом случайных факторов, таких как инфляция или терпимости к риску. Если моделирование показывает низкую вероятность достижения инвестиционных целей, фонд может быть диверсифицированы или уровни взносов изменены.

Статистическое моделирование представляет собой метод представления данных или прогнозирования результатов, учитывающий определенную степень случайности или непредсказуемости. Рынок страховых услуг, например, во многом зависит от стохастического моделирования для прогнозирования будущего состояния компании балансах, так как они могут зависеть от непредсказуемых событий, приводящих к оплате претензий. Многие другие отрасли и области исследования могут извлечь выгоду из стохастического моделирования, таких как статистика, фондовых инвестиций, биологии, лингвистики, и квантовой физики.

Особенно в мире страхования, стохастическое моделирование имеет решающее значение в определении того, какие можно ожидать результаты, и какие вряд ли могут произойти. Вместо того чтобы использовать фиксированные переменные, как в других математических моделях, стохастические включают в себя случайные изменения чтобы предсказать будущие условия и посмотреть, какими они могут быть. Конечно, возможность одного случайного изменения означает, что возможно много исходов. По этой причине, стохастические процессы работают не один раз, а сотни или даже тысячи раз. Большой сбор данных не только выражает возможные результаты, но и ожидаемые колебания.

Другой реальное применение стохастического моделирования, помимо страхования, является производство. Производство рассматривается как стохастический процесс из-за эффекта, как неизвестные или случайные величины могут влиять на конечный результат. Например, завод, который делает определенный продукт всегда знает, что небольшой процент из продуктов не выходят, как задумано, и не могут быть проданы. Это может быть связано с целым рядом факторов, таких как качество входов, рабочее состояние производственного оборудования, а также компетентности сотрудников, и многое другое. То, как эти факторы влияют на результаты, могут быть смоделированы, чтобы предсказать определенный коэффициент ошибок в производстве, для планировки производства.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристика y = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

С ледовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью является идеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

В процессе моделирования часто возникает задача – определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
. Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

ВВЕДЕНИЕ

Математические модели и методы моделирования экономических объектов являются необходимыми для управления экономическими объектами. Моделирование экономических систем актуально для специалистов по управлению экономическими объектами, особенно для тех, кто связан с созданием автоматизированных систем управления экономическими объектами.

Объектами исследования моделирования экономических систем являются любые экономические объекты. Математические модели экономических систем должны удовлетворять требованиям: адекватности, универсальности, полноты и простоты, должны соответствовать расчетным практическим формулам. Требованиям, предъявляемым к математическим моделям, наиболее соответствуют детерминированные, динамические, полные, теоретические непрерывные и дискретные модели.

История моделирования экономических систе м – это история имитационных математических моделей, которые лишь частично удовлетворяют предъявляемым требованиям и не обладают познавательными функциями. Неудовлетворенность степенью выполнения предъявляемых требований составляет основную проблему моделирования экономики. Решение этой проблемы моделирования экономики связано с развитием и использованием функциональных математических моделей и методов моделирования экономических объектов. Особенностью функционального моделирования является то, что оно основано на фундаментальных законах функционирования экономики, а преимуществом то, что функциональные модели в полной степени удовлетворяют предъявляемым требованиям и обладают высокими познавательными функциями. Поэтому в истории моделирования экономики можно выделить следующие этапы:

Этап формирования и применения имитационных математических моделей экономических объектов на основе отдельных закономерностей экономики;

Этап формирования и применения функциональных математических моделей экономических объектов на основе законов экономических систем.

Современные представления функционального моделирования экономических объектов выражены в законах функционирования, функциональных моделях и методами моделирования экономических систем. Овладение функциональн ым моделировани ем обеспечивает формирование у специалистов теоретических основ моделирования экономических систем, которые способствуют повышению качества моделирования поведения экономических объектов, создания автоматизированных систем управления экономическими объектами и повышению эффективности управления экономическими объектами.

Цель работы - ознакомление с математическими моделями и методами моделирования экономических систем, развитие умений применять эти знания на практике.

Задачи работы :

Рассмотреть стохастические модели в экономике ;

Рассмотреть практическое применение стохастических моделей в экономике ;

- развитие умений применять модели и метод ы моделирования экономических систем на практике .

1 СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ

В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет – это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеет одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие. Вероятностное подобие отмечается при наличии сходства между процессами вероятностного характера в объекте и модели. Геометрическое подобие имеет место при сходстве пространственных характеристик объекта и модели.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D ), а на оси абсцисс – цена (Р ). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот.

Физические или вещественные модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

При моделировании используется аналогия между объектом –оригиналом и его моделью. Аналогии бывают следующими:

  1. внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
  2. структурная аналогия (водопроводная сеть и электросеть моделируются с помощью графов, отражающих все связи и пересечения, но не длины отдельных трубопроводов);
  3. динамическая аналогия (по поведению системы) - маятник моделирует электрический колебательный контур.

Математические модели относятся ко второму и третьему типу. Смысл математического моделирования заключается в том, что эксперименты проводятся не с реальной физической моделью объекта, а с его описанием. Для них свойственно то, что они реализуются с использованием информационных технологий. Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. "Экономико-математическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме" (академик В.С. Немчинов).

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования различают модели:

    • микроэкономические;
    • одно-, двухсекторные (одно-, двухпродуктовые);
    • многосекторные (многопродуктовые);
    • макроэкономические;
    • глобальные.

    По учету фактора времени модели подразделяются на:

    • статические;
    • динамические.

В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.

По цели создания и применения различают модели:

    • балансовые;
    • эконометрические;
    • оптимизационные;
    • сетевые;
    • систем массового обслуживания;
    • имитационные (экспертные).

По учету фактора неопределенности модели подразделяются на:

    • детерминированные (с однозначно определенными результатами);
    • стохастические (с различными, вероятностными результатами).

По типу математического аппарата различают модели:

    • линейного и нелинейного программирования;
    • корреляционно-регрессионные;
    • матричные;
    • сетевые;
    • теории игр;
    • теории массового обслуживания и т.д.

Стохастическая модель – такая экономико-математическая модель , в которой параметры , условия функционирования и характеристики состояния моделируемого объекта представлены случайными величинами и связаны стохастическими (т. е. случайными, нерегулярными) зависимостями, либо исходная информация также представлена случайными величинами. Следовательно, характеристики состояния в модели определяются не однозначно, а через законы распределения их вероятностей . Моделируются, например, стохастические процессы в теории массового обслуживания , в сетевом планировании и управлении и в других областях. При построении стохастической модели применяются методы корреляционного и регрессионного анализов , другие статистические методы. Другие названия стохастической модели – недетерминированная, вероятностная модель.


Close