В системе кондиционирования воздуха теплоту удаляемого воздуха из помещений можно утилизировать двумя способами:

· Применяя схемы с рециркуляцией воздуха;

· Устанавливая утилизаторы теплоты.

Последний способ, как правило, применяют в прямоточных схемах систем кондиционирования воздуха. Однако использование утилизаторов теплоты на исключается и в схемах с рециркуляцией воздуха.

В современных системах вентиляции и кондиционирования воздуха применяется самое разнообразное оборудование: нагреватели, увлажнители, различные виды фильтров, регулируемые решетки и многое другое. Все это необходимо для достижения требуемых параметров воздуха, поддержания или создания комфортных условий для работы в помещении. На обслуживание всего этого оборудования требуется достаточно много энергии. Эффективным решением сбережения энергии в системах вентиляции становятся теплоутилизаторы. Основной принцип их работы – нагрев потока воздуха, подаваемого в помещение, с использованием теплоты потока, удаляемого из помещения. При использовании теплоутилизатора требуется меньшая мощность калорифера на подогрев приточного воздуха, тем самым уменьшается количество энергии, необходимое для его работы.

Утилизация теплоты в зданиях с кондиционированием воздуха может быть произведена посредством утилизации теплоты вентиляционных выбросов. Утилизация сбросной теплоты для нагрева свежего воздуха (или охлаждение поступающего свежего воздуха сбросным воздухом после системы кондиционирования летом) является простейшей формой утилизации. При этом можно отметить четыре типа систем утилизации, о которых уже упоминалось: вращающиеся регенераторы; теплообменники с промежуточным теплоносителем; простые воздушные теплообменники; трубчатые теплообменники. Вращающийся регенератор в системе кондиционирования воздуха может повышать температуру приточного воздуха зимой на 15 °С, а летом он может снижать температуру поступающего воздуха на 4-8 °С {6.3). Как и в других системах утилизации, за исключением теплообменника с промежуточным теплоносителем, вращающийся регенератор может функционировать только в том случае, если вытяжной и всасывающий каналы прилегают друг к другу в какой-то точке системы.



Теплообменник с промежуточным теплоносителем менее эффективен, чем вращающийся регенератор. В представленной системе вода циркулирует через два теплообменных змеевика, и так как применяется насос, то два змеевика могут быть расположены на некотором расстоянии друг от друга. И в этом теплообменнике, и во вращающемся регенераторе имеются подвижные части (насос и электродвигатель приводятся в движение и это отличает их от воздушного и трубчатого теплообменников. Одним из недостатков регенератора является то, что в каналах может происходить загрязнение. Грязь может осаждаться на колесе, которое затем переносит его во всасывающий канал. В большинстве колес в настоящее время предусмотрена продувка, которая сводит перенос загрязнений до минимума.

Простой воздушный теплообменник представляет собой стационарное устройство для теплообмена между отработанным и поступающим потоками воздуха, проходящими через него противотоком. Этот теплообменник напоминает прямоугольную стальную коробку с открытыми концами, разделенную на множество узких каналов типа камер. По чередующимся каналам идет отработанный и свежий воздух, и теплота передается от одного потока воздуха к другому просто через стенки каналов. Перенос загрязнений в теплообменнике не происходит, и поскольку значительная площадь поверхности заключена в компактном пространстве, достигается относительно высокая эффективность. Теплообменник с тепловой трубой можно рассматривать как логическое развитие конструкции вышеописанного теплообменника, в котором два потока воздуха в камеры остаются абсолютно раздельными, связанными пучком ребристых тепловых труб, которые переносят теплоту от одного канала к другому. Хотя стенка трубы может рассматриваться как дополнительное термическое сопротивление, эффективность теплопередачи внутри самой трубы, в которой происходит цикл испарения-конденсации, настолько велика, что в этих теплообменниках можно утилизировать до 70% сбросной теплоты. Одно из основных преимуществ этих теплообменников по сравнению с теплообменником с промежуточным теплоносителем и вращающимся регенератором - их надежность. Выход из строя нескольких труб лишь незначительно снизит эффективность работы теплообменника, но не остановит полностью систему утилизации.

При всем многообразии конструктивных решений утилизаторов тепла вторичных энергоресурсов в каждом из них имеются следующие элементы:

· Среда- источник тепловой энергии;

· Среда- потребитель тепловой энергии;

· Теплоприемник- теплообменник, воспринимающий тепло от источника;

· Теплопередатчик- теплообменник, передающий тепловую энергию потребителю;

· Рабочее вещество, транспортирующее тепловую энергию от источника к потребителю.

В регенеративных и воздуховоздушных (воздухожидкостных) рекуперативных теплоутилизаторах рабочим веществом являются сами теплообменивающиеся среды.

Примеры применения.

1. Подогрев воздуха в системах воздушного отопления.
Калориферы предназначены для быстрого нагрева воздуха с помощью водяного теплоносителя и равномерного его распределения с помощью вентилятора и направляющих жалюзи. Это хорошее решение для строительства и производственных цехов, где требуется быстрый нагрев и поддержание комфортной температуры только в рабочее время (в это же время, как правило, работают и печи).

2. Нагрев воды в системе горячего водоснабжения.
Применение теплоутилизаторов позволяет сгладить пики потребления энергии, так как максимальное потребление воды приходится на начало и конец смены.

3. Подогрев воды в системе отопления.
Закрытая система
Теплоноситель циркулирует по замкнутому контуру. Таким образом, отсутствует риск его загрязнения.
Открытая система. Теплоноситель нагревается горячим газом, а затем отдает тепло потребителю.

4. Подогрев дутьевого воздуха, идущего на горение. Позволяет сократить потребление топлива на 10%–15%.

Подсчитано, что основным резервом экономии топлива при работе горелок для котлов, печей и сушилок является утилизация теплоты отходящих газов путем нагрева воздухом сжигаемого топлива. Рекуперация тепла отходящих дымовых газов имеет большое значение в технологических процессах, поскольку тепло, возвращенное в печь или котел в виде подогретого дутьевого воздуха, позволяет сократить потребление топливного природного газа до 30 %.
5. Подогрев топлива, идущего на горение с использованием теплообменников "жидкость – жидкость". (Пример – подогрев мазута до 100˚–120˚ С.)

6. Подогрев технологической жидкости с использованием теплообменников "жидкость – жидкость". (Пример – подогрев гальванического раствора.)

Таким образом, теплоутилизатор – это:

Решение проблемы энергоэффективности производства;

Нормализация экологической обстановки;

Наличие комфортных условий на вашем производстве – тепла, горячей воды в административно-бытовых помещениях;

Уменьшение затрат на энергоресурсы.

Рисунок 1.

Структура энергопотребления и потенциала энергосбережения в жилых зданиях: 1 – трансмиссионные теплопотери; 2 – расход теплоты на вентиляцию; 3 – расход теплоты на горячее водоснабжение; 4– энергосбережение

Список использованной литературы.

1. Караджи В. Г., Московко Ю.Г.Некоторые особенности эффективного использования вентиляционно-отопительного оборудования. Руководство - М., 2004

2. Еремкин А.И, Бызеев В.В. Экономика энергоснабжения в системах отопления, венталиции и кондиционирования воздаха. Издателество Ассоциации строительных вузов М., 2008.

3. Сканави А. В., Махов. Л. М. Отопление. Издательство АСВ М., 2008

Утилизация теплоты уже много лет широко применяется в тепло-энергетик е — подогреватели питательной воды, экономайзеры, воздухо-подогреватели, газотурбинные регенераторы и т. д., но в холодильной технике ей уделяется еще недостаточное внимание. Это можно объяс-нить тем, что обычно сбрасывается теплота низкого потенциала (при тем-пературе ниже 100°С), поэтому для ее использования необходимо вво-дить в холодильную систему дополнительные теплообменники и прибо-ры автоматики, что усложняет ее. При этом холодильная система стано-вится более чувствительной к изменению внешних параметров.

В связи с энергетической проблемой, в настоящее время проекти-ровщики, в том числе и холодильного оборудования , вынуждены более внимательно анализировать традиционные системы в поисках новых схем с регенерацией теплоты конденсации.

Если холодильная установка имеет воздушный конденсатор , можно использовать нагретый воздух непо-средственно после конденсатора для обогрева помещений. Можно полез-но использовать и теплоту перегретых паров хладагента после компрес-сора , имеющих более высокий температурный потенциал.

Впервые схемы утилизации теплоты были разработаны европей-скими фирмами, так как в Европе сложились более высокие цены на электроэнергию в сравнении с ценами в США.

Комплектное холодильное оборудование фирмы ’’Костан” (Ита-лия), разработанное в последние годы, с системой утилизации теплоты воздушных конденсаторов применяется для отопления торгового зала магазинов типа ’’Универсам”. Такие системы позволяют сократить общее энергопотребление в магазине на 20—30%.

Основная цель — использование максимально возможного количе-ства теплоты , выделяемой холодильной машиной в окружающую среду. Теплота передается либо непосредственно потоком теплого воздуха пос-ле конденсатора в торговый зал магазина во время отопительного сезо-на, либо в дополнительный теплообменник-аккумулятор (теплота пере-гретых паров хладагента) для получения теплой воды, которая исполь-зуется для технологических нужд в течение всего года.

Опыт эксплуатации систем по первому способупоказал, что они просты в обслуживании, но сравнительно громоздки, исполь-зование их связано с необходимостью установки дополнительных вен-тиляторов для перемещения большого количества воздуха и воздуш-ных фильтров, что в конечном итоге приводит к росту приведенных затрат. Учитывая это, предпочтение отдают более сложным схемам, несмотря на то, что их реализация усложняет эксплуатацию.

Наиболее простой схемой с теплообменником-аккумулятором — является схема с поcледовательным соединением конденсатора и акку-мулятора. Эта схема работает следующим образом. При тем-пературах воды на входе в теплообменник-аккумулятор и температура окру-жающего воздуха, равных 10°С, температура конденсации tK сос-тавляет 20 С. В течение короткого времени (например, в течение ночи) вода в аккумуляторе нагревается до 50°С, a t повышается до 30°С. Объясняется это тем, что общая производительность конденсатора и аккумулятора понижается, так как при нагреве воды уменьшается первоначальный температурный напор в аккумуляторе.

Повышение на 10°С вполне допустимо, однако при неблагоприятных сочетаниях высокой температуры и малого потребления воды может наблюдаться и более значительное повышение температуры кон-денсации . Эта схема имеет следующие недостатки при эксплуатации: колебания давления конденсации; периодическое значительное пони-жение давления в ресивере, которое приводит к нарушению питания испарителя жидкостью; возможное обратное перетекание жидкости в воздушный конденсатор во время остановки компрессора, когда t значительно ниже температуры в ресивере.

Установка регулятора давления конденсации позво-ляет предотвращать обратное перетекание конденсата из ресивера в воз-душный конденсатор, а также поддерживать необходимое давление конденсации, например, соответствующее 25 °С.

При повышении tw до 50°С и tок до 25 °С регулятор давленияполностью открывается, при этом падение давления в нем не превышает 0,001 МПа.

Если и t снижаются до 10°С, то регулятор давления закрыва-ется и внутренняя полость воздушного конденсатора, а также часть зме-евика теплообменника-аккумулятора заполняются жидкостью. При по-вышении t до 25°С регулятор давления вновь открывается и жидкость из воздушного конденсатора выходит переохлажденной. Давление над поверхностью жидкости в ресивере будет равно давлению конденсации минус падение давления в регуляторе, причем давление в ресивере мо-жет стать настолько низким (например, соответствовать tK < 15°С), что жидкость перед подачей к регулирующему вентилю не будет переох-лажденной. В этом случае необходимо ввести в схему регенеративный теплообменник.

Для поддержания давления в ресивере в схему также вводится диф-ференциальный клапан. При tк= 20°С и tок — 40°С диф-ференциальный клапан закрыт, падение давления в трубопроводах воздушного конденсатора, теплообменника-аккумулятора и регулятора давления незначительно.

При понижении до 0°С, a t до 10°С жидкость перед регулятором давления будет иметь температуру примерно 10°С. Падение давления в регуляторе давления станет значительным, откроется дифференци-альный клапан 6 и горячий пар будет поступать в ресивер.

Однако и это полностью не исключает проблемы отсутствия пере-охлаждения жидкости в ресивере. Необходимы обязательная установка регенеративного теплообменника либо использование ресивера специ-альной конструкции. В этом случае холодная жидкость из конденсатора направляется непосредственно в жидкостный трубопровод. Такого же эффекта можно достигнуть установкой вертикального реси-вера, в котором более холодная жидкость опускается на дно, а горячий пар поступает в верхнюю часть.

Расположение регулятора давления в схеме между теплообменни-ком-аккумулятором и воздушным конденсатором. предпочти-тельно по следующим причинам: зимой может потребоваться много вре-мени на достижение необходимого давления конденсации; в компрес-сорно-конденсаторном агрегате редко бывает достаточной длина трубо-провода между конденсатором и ресивером; в существующих установках необходимо отключать сливной трубопровод, чтобы встроить теп-лообменник-аккумулятор. По этой схеме устанавливается и обратный клапан.

Разработаны схемы с параллельным соединением воздушных конденсаторов для поддержания в одном помещении температуры 20°С, а в другом, где часто открываются зимой двери, — 10°С. Такие схемы также требуют установки регуляторов давления и дифференциальных клапанов.

Параллельно включенные конденсаторы с утилизацией теплоты в летнее время обычно не работают, и давление в них несколько ниже, чем в основном конденсаторе. Вследствие неплотного закрытия соленоид-ных и обратных клапанов возможны рециркуляция жидкости и заполне-ние конденсатора-утилизатора. Во избежание этого в схеме предусмат-ривают байпасный трубопровод, через который периоди-чески включается конденсатор с утилизацией теплоты по сигналу реле времени.

Колебания тепловой нагрузки основного конденсатора и конден-саторов с утилизацией теплоты связаны с необходимостью использова-ния в таких схемах ресивера большей вместимости, чем в холодильных машинах без утилизации теплоты, либо установки дополнительного ресивера параллельно первому, что заставляет увеличивать количество хладагента для заправки системы.

Анализ различных схем утилизации теплоты с использова-нием стандартных теплообменников коаксиального типа (труба в трубе) при полной конденсации в них и использовании лишь теплоты перегре-ва паров показывает, что установка работает экономичнее при полной конденсации в регенераторе теплоты лишь при непрерывном и стабиль-ном использовании теплой воды.

Холодильная машина работает по двум цик-лам (с температурой кипения — 10°С и разными температурами конден-сации 35 и 55°С). В качестве регенератора теплоты используется допол-нительный противоточный водяной теплообменник, передающий тепло-ту перегрева паров хладагента при температурном напоре холодопроизводительности компрессора 10 кВт и потребляемой мощ-ности 2,1 кВт (Тк = 35°С) в основном конденсаторе можно нагреть воду (при расходе ее 0,012 кг/с) с 10 до 30°С, а затем в регенераторе по-высить температуру воды с 30 до 65 °С. В цикле с 55°С при холодопроизводительности 10 кВт и по-требляемой мощности 3,5 кВт в основном конденсаторе воды (при расходе 0,05 кг/с) нагревается с 10 до 50°С, и затем в дополнительном теплообменнике-регенераторе вода (при расходе 0,017 кг/с) нагрева-ется с 50 до 91°С. В первом случае полезно используется 13,7%, во вто-ром - 52% всей подводимой энергии.

Во всех случаях при выборе системы утилизации теплоты холо-дильной машины необходимо определить следующее:

  • холодопроизводительность компрессора и тепловую нагрузку на конденсатор;
  • режим работы холодильной машины в летний и зимний периоды; возможность использования утилизированной теплоты; взаимосвязь между необходимой теплотой для обогрева помещения и нагрева воды;
  • требуемую температуру теплой воды и расход ее по времени; надежность работы холодильной машины в режиме получения холода.
  • Опыт эксплуатации систем утилизации теплоты показывает, что первоначальные капитальные затраты на такую систему в крупных магазинах окупаются в течение 5 лет, поэтому внедрение их экономически целесообразно.

Описание:

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 0 С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Утилизация тепла

Д. Дросте , ИнноТек Системанализ ГмбХ, Берлин (Германия)

Технология

Основные положения

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 o С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Таким образом, утилизация тепла необходима для снижения потерь при вентиляции.

Технические решения

В вентиляционных системах зданий заданное количество удаляемого воздуха забирается из помещений с высоким содержанием влаги и загрязнений: кухни, туалета, ванной комнаты, - затем охлаждается в перекрестноточном пластинчатом теплообменнике и выбрасывается наружу. Такое же количество предварительно очищенного от пыли наружного приточного воздуха нагревается в теплообменнике без контакта с удаляемым воздухом и подается в жилые помещения, спальные и детские комнаты. Соответствующие устройства располагаются на чердаках, в подвалах или во вспомогательных помещениях.

В системах автоматической приточной вентиляции заданное количество воздуха с помощью вентиляторов подается в помещение непрерывно. Вытяжные вентиляторы отбирают загрязненный воздух из кухонь, туалетов и т.д.

При правильном подборе вентиляторов обеспечивается воздухообмен, соответствующий требованиям Федерального правительства. Для обеспечения утилизации тепла в систему включены специальные теплообменники, например, перекрестноточные, при необходимости снабженные тепловым насосом.

Современные установки в домах с хорошей теплоизоляцией, по сравнению с конвективной системой отопления, позволяют экономить до 50% тепла.

Эффективность передачи тепла от удаляемого воздуха к приточному составляет в пластинчатых теплообменниках около 60%, при влажном удаляемом воздухе даже больше. Это означает, что в квартире жилой площадью 100 м 2:

Мощность системы отопления ниже на 10 Вт/м 2 жилой площади;

Годовое потребление тепла снижается примерно с 40 до 15 кВт/м 2 ·год.

Экономическая эффективность

Управляемая система вентиляции и утилизации тепла требует энергетических затрат на подогрев воздуха меньше, чем другие системы. При этом, благодаря снижению установочной мощности системы отопления, при новом строительстве снижаются инвестиционные затраты. Дополнительно, за счет использования систем утилизации тепла, снижаются затраты на топливо, так как используются бытовые тепловыделения (имеются в виду тепловые выделения человека, электрических приборов, освещения, а также инсоляция и т.д.). Бытовые тепловыделения вместо того, чтобы "перегревать" помещение, в котором они возникают, перераспределяются по системе воздуховодов в те помещения, где есть "недогрев". Также следует иметь в виду, что во многих квартирах длительное проветривание через открытые окна часто нежелательно из-за высокого уровня шума. Использование в системе механической вентиляции установок утилизации тепла и тепловых насосов делает ее более энергоэкономичной.

Внедрение

Экономические предпосылки внедрения современных отопительных систем достаточно многообразны. В ряде федеральных земель существуют специальные налоговые льготы, благодаря которым первоначальные затраты можно снизить на 20-30%. Кроме того, ряд программ энергосбережения содержит разделы, посвященные вентиляции жилых помещений. Так, например, в программе земли Рейн-Пфальц предусмотрена доплата до 25%, но не более 7500 DМ. Особенно рекомендуется внедрение тепловых насосов, при этом в некоторых землях предусматривается доплата до 30%.

Примеры использования

Утилизация тепла в многоквартирном доме

В типичном многоквартирном доме в Лейпциге 1912 года постройки, который был реконструирован и дополнительно теплоизолирован, голландская вентиляционная фирма Van Ophoven использовала управляемую систему вентиляции с утилизацией тепла. Дома такого типа составляют до 60% жилого фонда Лейпцига. Система приточно-вытяжной вентиляции с утилизацией тепла в перекрестноточном теплообменнике автономна до момента включения дополнительного подогревателя приточного воздуха. Для обеспечения утилизации тепла в систему включены специальные теплообменники, в нашем примере - перекрестноточные. Речь идет в данном случае о равновесной системе вентиляции. Каждая квартира оборудована прибором, установленном на стене в специально отведенном месте. Наружный воздух предварительно нагревается в утилизационном устройстве, а затем с помощью дополнительного подогревателя нагревается до необходимой температуры. В данном случае речь идет о непрямом отоплении. Анализ эффективности этой системы показал, что экономия энергии составляет 40%, а выбросы СО 2 снизились на 69%.

Воздухообменные установки

Во многих административных зданиях в Носсене, в офисах, больницах, банках благоприятный микроклимат обеспечивают энергоэкономичные воздухообменные установки с утилизацией тепла. Эффективность утилизации тепла в противоточных теплообменниках может достигать 60%. На приведенном здесь снимке видно, что воздухообменные установки хорошо вписываются в обстановку помещения.

Литература

1. Arbeitskreis der Dozenten fur Klimatechnik: Handbuch der Klimatechnik, Verlag C.F. Muller GmbH, Karlsruhe

2. Recknagel/Sprenger: Taschenbuchfur Heizung + Klimatechnik, R. Oldenburg Verlag, Munchen/Wien 83/84

3. Ministerium fur Banuen und Wohnen des Landes Nordrhein-Westfalen: Luftung im Wohngebaude

4. THERMIE-Maxibroschure: Leitfaden energiesparende und emissionsarme Anlagen zur Heizung, Kuhlung und Klimatisierung von kleinen und mittleren Unternehmen in den neuen Bundeslandern, erhaltlich under OPET.

Утилизация тепла отходящих дымовых газов

Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значительное количество тепла. В мартеновских печах, например, из рабочего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих дымовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху). Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличить температуру горения и сэкономить топливо. При втором методе утилизации, тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива.

В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременно. Это делается тогда, когда температура дымовых газов после теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартеновских печах температура дымовых газов после регенераторов составляет 750-800 °С, поэтому их повторно используют в котлах-утилизаторах.

Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь.

Следует, прежде всего, отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единицы тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность единицы физического тепла тем больше, чем ниже коэффициент использования топлива и чем выше температура отходящих дымовых газов.

Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В это количество тепла входит не только тепло топлива , но и тепло подогретого воздуха или газа , т. е. .

Ясно, что при = const увеличение позволит уменьшить . Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов


где - соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт, или кДж/период.

Степень утилизации тепла может быть также названа к.п.д. рекуператора (регенератора), %

Зная величину степени утилизации тепла, можно определить экономию топлива по следующему выражению:

где I"д, Iд - соответственно энтальпия дымовых газов при температуре горения и покидающих печь.

Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономический эффект и является одним из путей снижения затрат на нагрев металла в промышленных печах.

Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической температуры горения , что может являться основной целью рекуперации при отоплении печей топливом с низкой теплотой сгорания.

Повышение при приводит к увеличению температуры горения. Если необходимо обеспечить определенную величину , то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в топливной смеси газа с высокой теплотой сгорания.

Поскольку утилизация тепла позволяет значительно экономить топливо целесообразно стремиться к максимально возможной, экономически оправданной степени утилизации. Однако необходимо сразу заметить, что утилизация не может быть полной, т. е. всегда . Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит к очень незначительному выигрышу в экономии тепла.

Государственное образовательное учреждение высшего профессионального образования

«Самарский Государственный Технический Университет»

Кафедра «Химическая технология и промышленная экология»

КУРСОВАЯ РАБОТА

по дисциплине «Техническая термодинамика и теплотехника»

Тема: Расчет установки утилизации теплоты отходящих газов технологической печи

Выполнил: Студент Рябинина Е.А.

ЗФ курс III группа 19

Проверил: Консультант Чуркина А.Ю.

Самара 2010 г.


Введение

На большинстве химических предприятий образуются высоко- и низко-температурные тепловые отходы, которые могут быть использованы в качестве вторичных энергетических ресурсов (ВЭР). К ним относятся уходящие газы различных котлов и технологических печей, охлаждаемые потоки, охлаждающая вода и отработанный пар.

Тепловые ВЭР в значительной степени покрывают потребности в тепле отдельных производств. Так, в азотной промышленности за счет ВЭР удовлетворяется боле 26 % потребности в тепле, в содовой промышленности – более 11 %.

Количество использованных ВЭР зависит от трех факторов: температуры ВЭР, их тепловой мощности и непрерывности выхода.

В настоящее время наибольшее распространение получила утилизация тепла отходящих производственных газов, которые почти для всех огнетехнических процессов имеют высокий температурный потенциал и в большинстве производств могут использоваться непрерывно. Тепло отходящих газов является основной состовляющей энергетического баланса. Его используют преимущественно для технологических, а в некоторых случаях – и для энергетических целей (в котлах-утилизаторах).

Однако широкое использование высокотемпературных тепловых ВЭР связано с разработкой методов утилизации, в том числе тепла раскаленных шлаков, продуктов и т. д., новых способов утилизации тепла отходящих газов, а также с совершенствованием конструкций существующего утилизационного оборудования.


1. Описание технологической схемы

В трубчатых печах, не имеющих камеры конвекции, или в печах радиантно-конвекционного типа, но имеющих сравнительно высокую начальную температуру нагреваемого продукта, температура отходящих газов может быть сравнительно высокой, что приводит к повышенным потерям тепла, уменьшению КПД печи и большему расходу топлива. Поэтому необходимо использовать тепло отходящих газов. Этого можно достигнуть либо применением воздухоподогревателя, нагревающего воздух, поступающий в печь для горения топлива, либо установкой котлов-утилизаторов, позволяющих получить водяной пар, необходимый для технологических нужд.

Однако для осуществления подогрева воздуха требуются дополнительные затраты на сооружение воздухоподогревателя, воздуходувки, а также дополнительный расход электроэнергии, потребляемый двигателем воздуходувки.

Для обеспечения нормальной эксплуатации воздухоподогревателя важно предотвратить возможность коррозии его поверхности со стороны потока дымовых газов. Такое явление возможно, когда температура поверхности теплообмена ниже температуры точки росы; при этом часть дымовых газов, непосредственно соприкасаясь с поверхностью воздухоподогревателя, значительно охлаждается, содержащийся в них водяной пар частично конденсируется и, поглощая из газов диоксид серы, образует агрессивную слабую кислоту.

Точка росы соответствует температуре, при которой давление насыщенных паров воды оказывается равным парциальному давлению водяных паров, содержащихся в дымовых газах.

Одним из наиболее надежных способов защиты от коррозии является предварительный подогрев воздуха каким-либо способом (например, в водяных или паровых калориферах) до температуры выше точки росы. Такая коррозия может иметь место и на поверхности конвекционных труб, если температура сырья, поступающего в печь, ниже точки росы.

Источником теплоты, для повышения температуры насыщенного пара, является реакция окисления (горения) первичного топлива. Образующиеся при горении дымовые газы отдают свою теплоту в радиационной, а затем конвекционной камерах сырьевому потоку (водяному пару). Перегретый водяной пар поступает к потребителю, а продукты сгорания покидают печь и поступают в котел-утилизатор. На выходе из КУ насыщенный водяной пар поступает обратно на подачу в печь перегрева пара, а дымовые газы, охлаждаясь питательной водой, поступают в воздухоподогреватель. Из воздухопо-догревателя дымовые газы поступают в КТАН, где поступающая по змеевику вода нагревается и идет на прямую к потребителю, а дымовые газы – в атмосферу.


2. Расчет печи

2.1 Расчет процесса горения

Определим низшую теплоту сгорания топлива Q р н. Если топливо представляет собой индивидуальный углеводород, то теплота сгорания его Q р н равна стандартной теплоте сгорания за вычетом теплоты испарения воды, находящейся в продуктах сгорания. Также она может быть рассчитана по стандартным тепловым эффектам образования исходных и конечных продуктов исходя из закона Гесса.

Для топлива, состоящего из смеси углеводородов, теплота сгорания определяется, но правилу аддитивности:

где Q pi н - теплота сгорания i-гo компонента топлива;

y i - концентрация i-гo компонента топлива в долях от единицы, тогда:

Q р н см = 35,84 ∙ 0,987 + 63,80 ∙ 0,0033+ 91,32 ∙ 0,0012+ 118,73 ∙ 0,0004 + 146,10 ∙ 0,0001 = 35,75 МДж/м 3 .

Молярную масса топлива:

M m = Σ M i ∙ y i ,

где M i – молярная масса i-гo компонента топлива, отсюда:


M m =16,042 ∙ 0,987 + 30,07 ∙ 0,0033 + 44,094 ∙ 0,0012 + 58,120 ∙ 0,0004 + 72,15 ∙ 0,0001 + 44,010∙0,001+ 28,01 ∙ 0,007 = 16,25 кг/моль.

кг/м 3 ,

тогда Q р н см, выраженная в МДж/кг, равна:

МДж/кг.

Результаты расчета сводим в табл. 1:

Состав топлива Таблица 1

Компонент

Молярная масса M i ,

Молярная доля y i ,

кмоль/кмоль

16,042 0,9870 15,83
30,070 0,0033 0,10
44,094 0,0012 0,05
58,120 0,0004 0,02
72,150 0,0001 0,01
44,010 0,0010 0,04
28,010 0,0070 0,20
ИТОГО: 1,0000 16,25

Определим элементарный состав топлива, % (масс.):


,

где n i C , n i H , n i N , n i O - число атомов углерода, водорода, азота и кислорода в молекулах отдельных компонентов, входящих в состав топлива;

Содержание каждого компонента топлива, масс. %;

M i - молярная масса отдельных компонентов топлива;

М m - молярная масса топлива.

Проверка состава:

C + H + O + N = 74,0 + 24,6 + 0,2 + 1,2 = 100 % (масс.).


Определим теоретическое количество воздуха, необходимое для сжигания 1 кг топлива, оно определяется из стехиометрического уравнения реакции горения и содержания кислорода в атмосферном воздухе. Если известен элементарный состав топлива, теоретическое количество воздуха L 0 , кг/кг, вычисляется по формуле:

На практике для обеспечения полноты сгорания топлива в топку вводят избыточное количество воздуха, найдем действительный расход воздуха при α = 1,25:

где L - действительный расход воздуха;

α - коэффициент избытка воздуха,

L=1,25∙17,0 = 21,25 кг/кг.

Удельный объем воздуха (н. у.) для горения 1 кг топлива:

где ρ в = 1,293 – плотность воздуха при нормальных условиях,

м 3 /кг.


Найдем количество продуктов сгорания, образующихся при сжигании 1 кг топлива:

если известен элементарный состав топлива, то массовый состав дымовых газов в расчете на 1 кг топлива при полном его сгорании может быть определен на основании следующих уравнений:

где m CO2 , m H2O , m N2 , m O2 - масса соответствующих газов, кг.

Суммарное количество продуктов горения:

m п. с = m CO2 + m H2O + m N2 + m O2 ,

m п. с = 2,71 + 2,21 + 16,33 + 1,00 = 22,25 кг/кг.

Проверяем полученную величину:

где W ф - удельный расход форсуночного пара при сжигании жидкого топлива, кг/кг (для газового топлива W ф = 0),


Поскольку топливо – газ, содержанием влаги в воздухе пренебрегаем, и количество водяного пара не учитываем.

Найдем объем продуктов сгорания при нормальных условиях, образовавшихся при сгорании 1 кг топлива:

где m i - масса соответствующего газа, образующегося при сгорании 1 кг топлива;

ρ i - плотность данного газа при нормальных условиях, кг/м 3 ;

М i - молярная масса данного газа, кг/кмоль;

22,4 - молярный объем, м 3 /кмоль,

м 3 /кг; м 3 /кг;

м 3 /кг; м 3 /кг.

Суммарный объем продуктов сгорания (н. у.) при фактическом расходе воздуха:

V = V CO2 + V H2O + V N2 + V O2 ,

V = 1,38 + 2,75+ 13,06 + 0,70 = 17,89 м 3 /кг.

Плотность продуктов сгорания (н. у.):


кг/м 3 .

Найдем теплоемкость и энтальпию продуктов сгорания 1 кг топлива в интервале температур от 100 °С (373 К) до 1500 °С (1773 К), используя данные табл. 2.

Средние удельные теплоемкости газов с р, кДж/(кг∙К) Таблица 2

Воздух
0 0,9148 1,0392 0,8148 1,8594 1,0036
100 0,9232 1,0404 0,8658 1,8728 1,0061
200 0,9353 1,0434 0,9102 1,8937 1,0115
300 0,9500 1,0488 0,9487 1,9292 1,0191
400 0,9651 1,0567 0,9877 1,9477 1,0283
500 0,9793 1,0660 1,0128 1,9778 1,0387
600 0,9927 1,0760 1,0396 2,0092 1,0496
700 1,0048 1,0869 1,0639 2,0419 1,0605
800 1,0157 1,0974 1,0852 2,0754 1,0710
1000 1,0305 1,1159 1,1225 2,1436 1,0807
1500 1,0990 1,1911 1,1895 2,4422 1,0903

Энтальпия дымовых газов, образующихся при сгорании 1 кг топлива:

где с CO2 , с H2O , с N2 , с О2 - средние удельные теплоемкости при постоянном давлении соответствующих газон при температуре t, кДж/(кг · К);

с t - средняя теплоемкость дымовых газов, образующихся при сгорании 1 кг топлива при температуре t, кДж/(кг К);

при 100 °С: кДж/(кг∙К);


при 200 °С: кДж/(кг∙К);

при 300 °С: кДж/(кг∙К);

при 400 °С: кДж/(кг∙К);

при 500 °С: кДж/(кг∙К);

при 600 °С: кДж/(кг∙К);

при 700 °С: кДж/(кг∙К);

при 800 °С: кДж/(кг∙К);

при 1000 °С: кДж/(кг∙К);

при 1500 °С: кДж/(кг∙К);


Результаты расчетов сводим в табл. 3.

Энтальпия продуктов сгорания Таблица 3

Температура

Теплоемкость

продуктов сгорания с t ,

кДж/(кг∙К)

Энтальпия

продуктов сгорания H t ,

°С К

Т. к. газы, отходящие из регенератора стекловаренной печи, достаточно чистые. В других случаях требуется еще установка специального фильтра, который бы отчистил газы перед тем, как они пойдут в теплообменник. Рис. 1. Рекуперативный теплообменник для утилизации теплоты отходящих газов. Горячая вода t = 95 °C Горячие отходящие...

Экономии различных видов энергии. 2. Постановка задачи Проанализировать работу печи перегрева водяного пара и для эффективности использования теплоты первичного топлива предложить теплоутилизационную установку вторичных энергоресурсов. 3. Описание технологической схемы Печь перегрева водяного пара на установке производства стирола предназначена для повышения температуры...

Объемы азота и водяного пара в продуктах сгорания ПГ. 1. ЦЕЛЬ РАБОТЫ 1.1 Ознакомиться с устройством котлов-утилизаторов 1.2 Получить практические навыки проведения термодинамического анализа эффективности агрегатов энерготехнологических систем и протекающих в них процессов. 2. СОДЕРЖАНИЕ РАБОТЫ 2.1 Проведение термодинамического анализа эффективности котла-утилизатора энергетическим и...


Close