Table of basic trigonometric functions for angles of 0, 30, 45, 60, 90, ... degrees

From the trigonometric definitions of the functions $\sin$, $\cos$, $\tan$ and $\cot$, you can find out their values ​​for angles $0$ and $90$ degrees:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ not defined;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ is not defined.

In a school geometry course, when studying right triangles, one finds the trigonometric functions of the angles $0°$, $30°$, $45°$, $60°$ and $90°$.

Found values ​​of trigonometric functions for the indicated angles in degrees and radians, respectively ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\pi)(3) $, $\frac(\pi)(2)$) for ease of memorization and use are entered into a table called trigonometric table, table of basic values ​​of trigonometric functions and so on.

When using reduction formulas, the trigonometric table can be expanded to an angle of $360°$ and, accordingly, $2\pi$ radians:

Using the periodicity properties of trigonometric functions, each angle, which will differ from the already known one by $360°$, can be calculated and recorded in a table. For example, the trigonometric function for angle $0°$ will have the same value for angle $0°+360°$, and for angle $0°+2 \cdot 360°$, and for angle $0°+3 \cdot 360°$ and etc.

Using a trigonometric table, you can determine the values ​​of all angles of a unit circle.

In a school geometry course, you are supposed to memorize the basic values ​​of trigonometric functions collected in a trigonometric table for the convenience of solving trigonometric problems.

Using a table

In the table, it is enough to find the required trigonometric function and the value of the angle or radians for which this function needs to be calculated. At the intersection of the row with the function and the column with the value, we obtain the desired value of the trigonometric function of the given argument.

In the figure you can see how to find the value of $\cos⁡60°$, which is equal to $\frac(1)(2)$.

The extended trigonometric table is used in the same way. The advantage of using it is, as already mentioned, the calculation of the trigonometric function of almost any angle. For example, you can easily find the value $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300°$:

Bradis tables of basic trigonometric functions

The ability to calculate the trigonometric function of absolutely any angle value for an integer value of degrees and an integer value of minutes is provided by the use of Bradis tables. For example, find the value of $\cos⁡34°7"$. The tables are divided into 2 parts: a table of values ​​of $\sin$ and $\cos$ and a table of values ​​of $\tan$ and $\cot$.

Bradis tables make it possible to obtain approximate values ​​of trigonometric functions with an accuracy of up to 4 decimal places.

Using Bradis tables

Using the Bradis tables for sines, we find $\sin⁡17°42"$. To do this, in the left column of the table of sines and cosines we find the value of degrees - $17°$, and in the top line we find the value of minutes - $42"$. At their intersection we obtain the desired value:

$\sin17°42"=0.304$.

To find the value $\sin17°44"$ you need to use the correction on the right side of the table. In this case, to the value $42"$, which is in the table, you need to add a correction for $2"$, which is equal to $0.0006$. We get:

$\sin17°44"=0.304+0.0006=0.3046$.

To find the value $\sin17°47"$ we also use the correction on the right side of the table, only in this case we take the value $\sin17°48"$ as a basis and subtract the correction for $1"$:

$\sin17°47"=0.3057-0.0003=0.3054$.

When calculating cosines, we perform similar actions, but we look at the degrees in the right column, and the minutes in the bottom column of the table. For example, $\cos20°=0.9397$.

For tangent values ​​up to $90°$ and small angle cotangent there are no corrections. For example, let's find $\tan 78°37"$, which according to the table is equal to $4.967$.

Tables of values ​​of sines (sin), cosines (cos), tangents (tg), cotangents (ctg) are a powerful and useful tool that helps solve many problems, both theoretical and applied. In this article we will provide a table of basic trigonometric functions (sines, cosines, tangents and cotangents) for angles of 0, 30, 45, 60, 90, ..., 360 degrees (0, π 6, π 3, π 2,... . , 2 π radians). Separate Bradis tables for sines and cosines, tangents, and cotangents will also be shown, with an explanation of how to use them to find the values ​​of basic trigonometric functions.

Table of basic trigonometric functions for angles 0, 30, 45, 60, 90, ..., 360 degrees

Based on the definitions of sine, cosine, tangent and cotangent, you can find the values ​​of these functions for angles of 0 and 90 degrees

sin 0 = 0, cos 0 = 1, t g 0 = 0, zero cotangent is not defined,

sin 90° = 1, cos 90° = 0, c t g 90° = 0, tangent of ninety degrees is not defined.

The values ​​of sines, cosines, tangents and cotangents in the geometry course are defined as the ratio of the sides of a right triangle, the angles of which are 30, 60 and 90 degrees, and also 45, 45 and 90 degrees.

Defining trigonometric functions for an acute angle in a right triangle

Sinus- the ratio of the opposite side to the hypotenuse.

Cosine- the ratio of the adjacent leg to the hypotenuse.

Tangent- the ratio of the opposite side to the adjacent side.

Cotangent- the ratio of the adjacent side to the opposite side.

In accordance with the definitions, the values ​​of the functions are found:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1, sin 60° = 3 2, cos 45° = 1 2, tg 45° = 3, c tg 45° = 3 3.

Let's put these values ​​in a table and call it a table of the basic values ​​of sine, cosine, tangent and cotangent.

Table of basic values ​​of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90
sin α 0 1 2 2 2 3 2 1
cos α 1 3 2 2 2 1 2 0
t g α 0 3 3 1 3 indefined
c t g α indefined 3 1 3 3 0
α, r a d i a n 0 π 6 π 4 π 3 π 2

One of the important properties of trigonometric functions is periodicity. Based on this property, this table can be expanded using reduction formulas. Below we present an extended table of the values ​​of the main trigonometric functions for angles 0, 30, 60, ... , 120, 135, 150, 180, ... , 360 degrees (0, π 6, π 3, π 2, ... , 2 π radians).

Table of sines, cosines, tangents and cotangents

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
sin α 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
cos α 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
t g α 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g α - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α, r a d i a n 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π 7 π 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 π 6

The periodicity of sine, cosine, tangent and cotangent allows you to expand this table to arbitrarily large angle values. The values ​​collected in the table are used most often when solving problems, so it is recommended to memorize them.

How to use the table of basic values ​​of trigonometric functions

The principle of using the table of values ​​of sines, cosines, tangents and cotangents is clear on an intuitive level. The intersection of a row and a column gives the value of the function for a particular angle.

Example. How to use the table of sines, cosines, tangents and cotangents

We need to find out what sin 7 π 6 is equal to

We find a column in the table whose last cell value is 7 π 6 radians - the same as 210 degrees. Then we select the term of the table in which the values ​​of sines are presented. At the intersection of the row and column we find the desired value:

sin 7 π 6 = - 1 2

Bradis tables

The Bradis table allows you to calculate the value of sine, cosine, tangent or cotangent with an accuracy of 4 decimal places without the use of computer technology. This is a kind of replacement for an engineering calculator.

Reference

Vladimir Modestovich Bradis (1890 - 1975) - Soviet mathematician-teacher, since 1954 corresponding member of the Academy of Pedagogical Sciences of the USSR. The tables of four-digit logarithms and natural trigonometric quantities developed by Bradis were first published in 1921.

First, we present the Bradis table for sines and cosines. It allows you to quite accurately calculate the approximate values ​​of these functions for angles containing an integer number of degrees and minutes. The leftmost column of the table represents degrees, and the top row represents minutes. Note that all angle values ​​of the Bradis table are multiples of six minutes.

Bradis table for sines and cosines

sin 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" cos 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
sin 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" cos 1" 2" 3"

To find the values ​​of sines and cosines of angles not presented in the table, it is necessary to use corrections.

Now we present the Bradis table for tangents and cotangents. It contains values ​​of tangents of angles from 0 to 76 degrees, and cotangents of angles from 14 to 90 degrees.

Bradis table for tangent and cotangent

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

How to use Bradis tables

Consider the Bradis table for sines and cosines. Everything related to sinuses is at the top and to the left. If we need cosines, look at the right side at the bottom of the table.

To find the values ​​of the sine of an angle, you need to find the intersection of the row containing the required number of degrees in the leftmost cell and the column containing the required number of minutes in the top cell.

If the exact angle value is not in the Bradis table, we resort to corrections. Corrections for one, two and three minutes are given in the rightmost columns of the table. To find the value of the sine of an angle that is not in the table, we find the value closest to it. After this, we add or subtract the correction corresponding to the difference between the angles.

If we are looking for the sine of an angle that is greater than 90 degrees, we first need to use the reduction formulas, and only then the Bradis table.

Example. How to use the Bradis table

Let's say we need to find the sine of the angle 17 ° 44 ". Using the table, we find what the sine of 17 ° 42 " is equal to and add a correction of two minutes to its value:

17°44" - 17°42" = 2" (necessary correction) sin 17°44" = 0. 3040 + 0 . 0006 = 0 . 3046

The principle of working with cosines, tangents and cotangents is similar. However, it is important to remember the sign of the amendments.

Important!

When calculating the values ​​of sines, the correction has a positive sign, and when calculating cosines, the correction must be taken with a negative sign.

If you notice an error in the text, please highlight it and press Ctrl+Enter

In the article, we will fully understand what it looks like table of trigonometric values, sine, cosine, tangent and cotangent. Let's consider the basic meaning of trigonometric functions, from an angle of 0,30,45,60,90,...,360 degrees. And let's see how to use these tables in calculating the values ​​of trigonometric functions.
First let's look at table of cosine, sine, tangent and cotangent from an angle of 0, 30, 45, 60, 90,... degrees. The definition of these quantities allows us to determine the value of the functions of angles of 0 and 90 degrees:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, cotangent from 0 0 will be undefined
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0, tangent from 90 0 will be uncertain

If you take right triangles whose angles are from 30 to 90 degrees. We get:

sin 30 0 = 1/2, cos 30 0 = √3/2, tan 30 0 = √3/3, cos 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tan 45 0 = 1, cos 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3, cot 60 0 = √3/3

Let us represent all the obtained values ​​in the form trigonometric table:

Table of sines, cosines, tangents and cotangents!

If we use the reduction formula, our table will increase, adding values ​​for angles up to 360 degrees. It will look like:

Also, based on the properties of periodicity, the table can be increased if we replace the angles with 0 0 +360 0 *z .... 330 0 +360 0 *z, in which z is an integer. In this table it is possible to calculate the value of all angles corresponding to points in a single circle.

Let's look at how to use the table in a solution.
Everything is very simple. Since the value we need lies at the intersection point of the cells we need. For example, take the cos of an angle of 60 degrees, in the table it will look like:

In the final table of the main values ​​of trigonometric functions, we proceed in the same way. But in this table it is possible to find out how much the tangent from an angle of 1020 degrees is, it = -√3 Let's check 1020 0 = 300 0 +360 0 *2. Let's find it using the table.

For more searching, trigonometric angle values ​​accurate to minutes are used. Detailed instructions on how to use them are on the page.

Bradis table. For sine, cosine, tangent and cotangent.

The Bradis tables are divided into several parts, consisting of tables of cosine and sine, tangent and cotangent - which is divided into two parts (tg of angles up to 90 degrees and ctg of small angles).

Sine and cosine

tg of the angle starting from 0 0 ending with 76 0, ctg of the angle starting from 14 0 ending with 90 0.

tg up to 90 0 and ctg of small angles.

Let's figure out how to use Bradis tables in solving problems.

Let's find the designation sin (designation in the column on the left edge) 42 minutes (designation is on the top line). By intersection we look for the designation, it = 0.3040.

The minute values ​​are indicated with an interval of six minutes, what to do if the value we need falls exactly within this interval. Let's take 44 minutes, but there are only 42 in the table. We take 42 as a basis and use the additional columns on the right side, take the 2nd amendment and add to 0.3040 + 0.0006 we get 0.3046.

With sin 47 minutes, we take 48 minutes as a basis and subtract 1 correction from it, i.e. 0.3057 - 0.0003 = 0.3054

When calculating cos, we work similarly to sin, only we take the bottom row of the table as a basis. For example cos 20 0 = 0.9397

The values ​​of tg angle up to 90 0 and cot of a small angle are correct and there are no corrections in them. For example, find tg 78 0 37min = 4.967


and ctg 20 0 13min = 25.83

Well, we've looked at the basic trigonometric tables. We hope this information was extremely useful to you. If you have any questions about the tables, be sure to write them in the comments!

Note: Wall bumpers - bumper board for protecting walls (http://www.spi-polymer.ru/otboyniki/)

Simply put, these are vegetables cooked in water according to a special recipe. I will consider two initial components (vegetable salad and water) and the finished result - borscht. Geometrically, it can be thought of as a rectangle, with one side representing lettuce and the other side representing water. The sum of these two sides will indicate borscht. The diagonal and area of ​​such a “borscht” rectangle are purely mathematical concepts and are never used in borscht recipes.


How do lettuce and water turn into borscht from a mathematical point of view? How can the sum of two line segments become trigonometry? To understand this, we need linear angular functions.


You won't find anything about linear angular functions in math textbooks. But without them there can be no mathematics. The laws of mathematics, like the laws of nature, work regardless of whether we know about their existence or not.

Linear angular functions are addition laws. See how algebra turns into geometry and geometry turns into trigonometry.

Is it possible to do without linear angular functions? It’s possible, because mathematicians still manage without them. The trick of mathematicians is that they always tell us only about those problems that they themselves know how to solve, and never talk about those problems that they cannot solve. Look. If we know the result of addition and one term, we use subtraction to find the other term. All. We don’t know other problems and we don’t know how to solve them. What should we do if we only know the result of the addition and do not know both terms? In this case, the result of the addition must be decomposed into two terms using linear angular functions. Next, we ourselves choose what one term can be, and linear angular functions show what the second term should be so that the result of the addition is exactly what we need. There can be an infinite number of such pairs of terms. In everyday life, we get along just fine without decomposing the sum; subtraction is enough for us. But in scientific research into the laws of nature, decomposing a sum into its components can be very useful.

Another law of addition that mathematicians don't like to talk about (another of their tricks) requires that the terms have the same units of measurement. For salad, water, and borscht, these could be units of weight, volume, value, or unit of measure.

The figure shows two levels of difference for mathematical . The first level is the differences in the field of numbers, which are indicated a, b, c. This is what mathematicians do. The second level is the differences in the field of units of measurement, which are shown in square brackets and indicated by the letter U. This is what physicists do. We can understand the third level - differences in the area of ​​​​the objects being described. Different objects can have the same number of identical units of measurement. How important this is, we can see in the example of borscht trigonometry. If we add subscripts to the same unit designation for different objects, we can say exactly what mathematical quantity describes a particular object and how it changes over time or due to our actions. Letter W I will designate water with a letter S I'll designate the salad with a letter B- borsch. This is what linear angular functions for borscht will look like.

If we take some part of the water and some part of the salad, together they will turn into one portion of borscht. Here I suggest you take a little break from borscht and remember your distant childhood. Remember how we were taught to put bunnies and ducks together? It was necessary to find how many animals there would be. What were we taught to do then? We were taught to separate units of measurement from numbers and add numbers. Yes, any one number can be added to any other number. This is a direct path to the autism of modern mathematics - we do it incomprehensibly what, incomprehensibly why, and very poorly understand how this relates to reality, because of the three levels of difference, mathematicians operate with only one. It would be more correct to learn how to move from one unit of measurement to another.

Bunnies, ducks, and little animals can be counted in pieces. One common unit of measurement for different objects allows us to add them together. This is a children's version of the problem. Let's look at a similar task for adults. What do you get when you add bunnies and money? Here we can offer two solutions.

First option. We determine the market value of the bunnies and add it to the available amount of money. We have received the total value of our wealth in monetary terms.

Second option. You can add the number of bunnies to the number of banknotes we have. We will receive the amount of movable property in pieces.

As you can see, the same addition law allows you to get different results. It all depends on what exactly we want to know.

But let's get back to our borscht. Now we can see what will happen for different angle values ​​of linear angular functions.

The angle is zero. We have salad, but no water. We can't cook borscht. The amount of borscht is also zero. This does not mean at all that zero borscht is equal to zero water. There can be zero borscht with zero salad (right angle).


For me personally, this is the main mathematical proof of the fact that . Zero does not change the number when added. This happens because addition itself is impossible if there is only one term and the second term is missing. You can feel about this as you like, but remember - all mathematical operations with zero were invented by mathematicians themselves, so throw away your logic and stupidly cram the definitions invented by mathematicians: “division by zero is impossible”, “any number multiplied by zero equals zero” , “beyond the puncture point zero” and other nonsense. It is enough to remember once that zero is not a number, and you will never again have a question whether zero is a natural number or not, because such a question loses all meaning: how can something that is not a number be considered a number? It's like asking what color an invisible color should be classified as. Adding a zero to a number is the same as painting with paint that is not there. We waved a dry brush and told everyone that “we painted.” But I digress a little.

The angle is greater than zero but less than forty-five degrees. We have a lot of lettuce, but not enough water. As a result, we will get thick borscht.

The angle is forty-five degrees. We have equal quantities of water and salad. This is the perfect borscht (forgive me, chefs, it's just math).

The angle is greater than forty-five degrees, but less than ninety degrees. We have a lot of water and little salad. You will get liquid borscht.

Right angle. We have water. All that remains of the salad are memories, as we continue to measure the angle from the line that once marked the salad. We can't cook borscht. The amount of borscht is zero. In this case, hold on and drink water while you have it)))

Here. Something like this. I can tell other stories here that would be more than appropriate here.

Two friends had their shares in a common business. After killing one of them, everything went to the other.

The emergence of mathematics on our planet.

All these stories are told in the language of mathematics using linear angular functions. Some other time I will show you the real place of these functions in the structure of mathematics. In the meantime, let's return to borscht trigonometry and consider projections.

Saturday, October 26, 2019

Wednesday, August 7, 2019

Concluding the conversation about, we need to consider an infinite set. The point is that the concept of “infinity” affects mathematicians like a boa constrictor affects a rabbit. The trembling horror of infinity deprives mathematicians of common sense. Here's an example:

The original source is located. Alpha stands for real number. The equal sign in the above expressions indicates that if you add a number or infinity to infinity, nothing will change, the result will be the same infinity. If we take the infinite set of natural numbers as an example, then the considered examples can be represented in this form:

To clearly prove that they were right, mathematicians came up with many different methods. Personally, I look at all these methods as shamans dancing with tambourines. Essentially, they all boil down to the fact that either some of the rooms are unoccupied and new guests are moving in, or that some of the visitors are thrown out into the corridor to make room for guests (very humanly). I presented my view on such decisions in the form of a fantasy story about the Blonde. What is my reasoning based on? Relocating an infinite number of visitors takes an infinite amount of time. After we have vacated the first room for a guest, one of the visitors will always walk along the corridor from his room to the next one until the end of time. Of course, the time factor can be stupidly ignored, but this will be in the category of “no law is written for fools.” It all depends on what we are doing: adjusting reality to mathematical theories or vice versa.

What is an “endless hotel”? An infinite hotel is a hotel that always has any number of empty beds, regardless of how many rooms are occupied. If all the rooms in the endless "visitor" corridor are occupied, there is another endless corridor with "guest" rooms. There will be an infinite number of such corridors. Moreover, the “infinite hotel” has an infinite number of floors in an infinite number of buildings on an infinite number of planets in an infinite number of universes created by an infinite number of Gods. Mathematicians are not able to distance themselves from banal everyday problems: there is always only one God-Allah-Buddha, there is only one hotel, there is only one corridor. So mathematicians are trying to juggle the serial numbers of hotel rooms, convincing us that it is possible to “shove in the impossible.”

I will demonstrate the logic of my reasoning to you using the example of an infinite set of natural numbers. First you need to answer a very simple question: how many sets of natural numbers are there - one or many? There is no correct answer to this question, since we invented numbers ourselves; numbers do not exist in Nature. Yes, Nature is great at counting, but for this she uses other mathematical tools that are not familiar to us. I’ll tell you what Nature thinks another time. Since we invented numbers, we ourselves will decide how many sets of natural numbers there are. Let's consider both options, as befits real scientists.

Option one. “Let us be given” one single set of natural numbers, which lies serenely on the shelf. We take this set from the shelf. That's it, there are no other natural numbers left on the shelf and nowhere to take them. We cannot add one to this set, since we already have it. What if you really want to? No problem. We can take one from the set we have already taken and return it to the shelf. After that, we can take one from the shelf and add it to what we have left. As a result, we will again get an infinite set of natural numbers. You can write down all our manipulations like this:

I wrote down the actions in algebraic notation and in set theory notation, with a detailed listing of the elements of the set. The subscript indicates that we have one and only set of natural numbers. It turns out that the set of natural numbers will remain unchanged only if one is subtracted from it and the same unit is added.

Option two. We have many different infinite sets of natural numbers on our shelf. I emphasize - DIFFERENT, despite the fact that they are practically indistinguishable. Let's take one of these sets. Then we take one from another set of natural numbers and add it to the set we have already taken. We can even add two sets of natural numbers. This is what we get:

The subscripts "one" and "two" indicate that these elements belonged to different sets. Yes, if you add one to an infinite set, the result will also be an infinite set, but it will not be the same as the original set. If you add another infinite set to one infinite set, the result is a new infinite set consisting of the elements of the first two sets.

The set of natural numbers is used for counting in the same way as a ruler is for measuring. Now imagine that you added one centimeter to the ruler. This will be a different line, not equal to the original one.

You can accept or not accept my reasoning - it is your own business. But if you ever encounter mathematical problems, consider whether you are following the path of false reasoning trodden by generations of mathematicians. After all, studying mathematics, first of all, forms a stable stereotype of thinking in us, and only then adds to our mental abilities (or, conversely, deprives us of free-thinking).

pozg.ru

Sunday, August 4, 2019

I was finishing a postscript to an article about and saw this wonderful text on Wikipedia:

We read: "... the rich theoretical basis of the mathematics of Babylon did not have a holistic character and was reduced to a set of disparate techniques, devoid of a common system and evidence base."

Wow! How smart we are and how well we can see the shortcomings of others. Is it difficult for us to look at modern mathematics in the same context? Slightly paraphrasing the above text, I personally got the following:

The rich theoretical basis of modern mathematics is not holistic in nature and is reduced to a set of disparate sections, devoid of a common system and evidence base.

I won’t go far to confirm my words - it has a language and conventions that are different from the language and conventions of many other branches of mathematics. The same names in different branches of mathematics can have different meanings. I want to devote a whole series of publications to the most obvious mistakes of modern mathematics. See you soon.

Saturday, August 3, 2019

How to divide a set into subsets? To do this, you need to enter a new unit of measurement that is present in some of the elements of the selected set. Let's look at an example.

May we have plenty A consisting of four people. This set is formed on the basis of “people.” Let us denote the elements of this set by the letter A, the subscript with a number will indicate the serial number of each person in this set. Let's introduce a new unit of measurement "gender" and denote it by the letter b. Since sexual characteristics are inherent in all people, we multiply each element of the set A based on gender b. Notice that our set of “people” has now become a set of “people with gender characteristics.” After this we can divide sexual characteristics into male bm and women's bw sexual characteristics. Now we can apply a mathematical filter: we select one of these sexual characteristics, no matter which one - male or female. If a person has it, then we multiply it by one, if there is no such sign, we multiply it by zero. And then we use regular school mathematics. Look what happened.

After multiplication, reduction and rearrangement, we ended up with two subsets: the subset of men Bm and a subset of women Bw. Mathematicians reason in approximately the same way when they apply set theory in practice. But they don’t tell us the details, but give us the finished result - “a lot of people consist of a subset of men and a subset of women.” Naturally, you may have a question: how correctly has the mathematics been applied in the transformations outlined above? I dare to assure you that essentially everything was done correctly; it is enough to know the mathematical basis of arithmetic, Boolean algebra and other branches of mathematics. What it is? Some other time I will tell you about this.

As for supersets, you can combine two sets into one superset by selecting the unit of measurement present in the elements of these two sets.

As you can see, units of measurement and ordinary mathematics make set theory a relic of the past. A sign that all is not well with set theory is that mathematicians have come up with their own language and notation for set theory. Mathematicians acted as shamans once did. Only shamans know how to “correctly” apply their “knowledge.” They teach us this “knowledge”.

In conclusion, I want to show you how mathematicians manipulate .

Monday, January 7, 2019

In the fifth century BC, the ancient Greek philosopher Zeno of Elea formulated his famous aporias, the most famous of which is the “Achilles and the Tortoise” aporia. Here's what it sounds like:

Let's say Achilles runs ten times faster than the tortoise and is a thousand steps behind it. During the time it takes Achilles to run this distance, the tortoise will crawl a hundred steps in the same direction. When Achilles runs a hundred steps, the tortoise crawls another ten steps, and so on. The process will continue ad infinitum, Achilles will never catch up with the tortoise.

This reasoning became a logical shock for all subsequent generations. Aristotle, Diogenes, Kant, Hegel, Hilbert... They all considered Zeno's aporia in one way or another. The shock was so strong that " ... discussions continue to this day; the scientific community has not yet been able to come to a common opinion on the essence of paradoxes ... mathematical analysis, set theory, new physical and philosophical approaches were involved in the study of the issue; none of them became a generally accepted solution to the problem..."[Wikipedia, "Zeno's Aporia". Everyone understands that they are being fooled, but no one understands what the deception consists of.

From a mathematical point of view, Zeno in his aporia clearly demonstrated the transition from quantity to . This transition implies application instead of permanent ones. As far as I understand, the mathematical apparatus for using variable units of measurement has either not yet been developed, or it has not been applied to Zeno’s aporia. Applying our usual logic leads us into a trap. We, due to the inertia of thinking, apply constant units of time to the reciprocal value. From a physical point of view, this looks like time slowing down until it stops completely at the moment when Achilles catches up with the turtle. If time stops, Achilles can no longer outrun the tortoise.

If we turn our usual logic around, everything falls into place. Achilles runs at a constant speed. Each subsequent segment of his path is ten times shorter than the previous one. Accordingly, the time spent on overcoming it is ten times less than the previous one. If we apply the concept of “infinity” in this situation, then it would be correct to say “Achilles will catch up with the turtle infinitely quickly.”

How to avoid this logical trap? Remain in constant units of time and do not switch to reciprocal units. In Zeno's language it looks like this:

In the time it takes Achilles to run a thousand steps, the tortoise will crawl a hundred steps in the same direction. During the next time interval equal to the first, Achilles will run another thousand steps, and the tortoise will crawl a hundred steps. Now Achilles is eight hundred steps ahead of the tortoise.

This approach adequately describes reality without any logical paradoxes. But this is not a complete solution to the problem. Einstein’s statement about the irresistibility of the speed of light is very similar to Zeno’s aporia “Achilles and the Tortoise”. We still have to study, rethink and solve this problem. And the solution must be sought not in infinitely large numbers, but in units of measurement.

Another interesting aporia of Zeno tells about a flying arrow:

A flying arrow is motionless, since at every moment of time it is at rest, and since it is at rest at every moment of time, it is always at rest.

In this aporia, the logical paradox is overcome very simply - it is enough to clarify that at each moment of time a flying arrow is at rest at different points in space, which, in fact, is motion. Another point needs to be noted here. From one photograph of a car on the road it is impossible to determine either the fact of its movement or the distance to it. To determine whether a car is moving, you need two photographs taken from the same point at different points in time, but you cannot determine the distance from them. To determine the distance to a car, you need two photographs taken from different points in space at one point in time, but from them you cannot determine the fact of movement (of course, you still need additional data for calculations, trigonometry will help you). What I want to draw special attention to is that two points in time and two points in space are different things that should not be confused, because they provide different opportunities for research.
I'll show you the process with an example. We select the “red solid in a pimple” - this is our “whole”. At the same time, we see that these things are with a bow, and there are without a bow. After that, we select part of the “whole” and form a set “with a bow”. This is how shamans get their food by tying their set theory to reality.

Now let's do a little trick. Let’s take “solid with a pimple with a bow” and combine these “wholes” according to color, selecting the red elements. We got a lot of "red". Now the final question: are the resulting sets “with a bow” and “red” the same set or two different sets? Only shamans know the answer. More precisely, they themselves do not know anything, but as they say, so it will be.

This simple example shows that set theory is completely useless when it comes to reality. What's the secret? We formed a set of "red solid with a pimple and a bow." The formation took place in four different units of measurement: color (red), strength (solid), roughness (pimply), decoration (with a bow). Only a set of units of measurement allows us to adequately describe real objects in the language of mathematics. This is what it looks like.

The letter "a" with different indices denotes different units of measurement. The units of measurement by which the “whole” is distinguished at the preliminary stage are highlighted in brackets. The unit of measurement by which the set is formed is taken out of brackets. The last line shows the final result - an element of the set. As you can see, if we use units of measurement to form a set, then the result does not depend on the order of our actions. And this is mathematics, and not the dancing of shamans with tambourines. Shamans can “intuitively” come to the same result, arguing that it is “obvious,” because units of measurement are not part of their “scientific” arsenal.

Using units of measurement, it is very easy to split one set or combine several sets into one superset. Let's take a closer look at the algebra of this process.


This article contains tables of sines, cosines, tangents and cotangents. First, we will provide a table of the basic values ​​of trigonometric functions, that is, a table of sines, cosines, tangents and cotangents of angles of 0, 30, 45, 60, 90, ..., 360 degrees ( 0, π/6, π/4, π/3, π/2, …, 2π radian). After this, we will give a table of sines and cosines, as well as a table of tangents and cotangents by V. M. Bradis, and show how to use these tables when finding the values ​​of trigonometric functions.

Page navigation.

Table of sines, cosines, tangents and cotangents for angles of 0, 30, 45, 60, 90, ... degrees

Bibliography.

  • Algebra: Textbook for 9th grade. avg. school/Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky. - M.: Education, 1990. - 272 pp.: ill. - ISBN 5-09-002727-7
  • Bashmakov M. I. Algebra and the beginnings of analysis: Textbook. for 10-11 grades. avg. school - 3rd ed. - M.: Education, 1993. - 351 p.: ill. - ISBN 5-09-004617-4.
  • Algebra and the beginning of analysis: Proc. for 10-11 grades. general education institutions / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn and others; Ed. A. N. Kolmogorov. - 14th ed. - M.: Education, 2004. - 384 pp.: ill. - ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G. Mathematics (a manual for those entering technical schools): Proc. allowance.- M.; Higher school, 1984.-351 p., ill.
  • Bradis V. M. Four-digit math tables: For general education. textbook establishments. - 2nd ed. - M.: Bustard, 1999.- 96 p.: ill. ISBN 5-7107-2667-2

Close