Законы Ньютона - математическая абстракция. В реальности причиной движения или покоя тел, а также их деформации, выступают сразу несколько сил. Поэтому важным дополнениям к законам механики будет введение понятия равнодействующей силы и его применение.

О причинах изменений

Классическая механика разделена на два раздела - кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести - падение тел на Землю.

Сила - это векторная величина, то есть, ее действие - направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины - это ее жесткость), а также параметрам действия (масса, заряд).

Например, в случае кулоновской силы - это величина обоих зарядов, взятых по модулю, квадрат расстояние между зарядами и коэффициент k, в системе СИ определяемый выражением: $k = {1 \over 4 \pi \epsilon}$, где $\epsilon$ – диэлектрическая постоянная.

Сложение сил

В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

$m\vec a = \sum\limits_{i=1}^n \vec F_i$.

Рис. 1. Равнодействующая сил.

Поскольку F - векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

$F = \sum\limits_{i=1}^n \vec F_i$

А силу $F_i$ представим в виде:

$F = (F_{xi}, F_{yi}, F_{zi})$

Тогда суммой двух сил будет новый вектор $F_{ab} = (F_{xb} + F_{xa}, F_{yb} + F_{ya}, F_{zb} + F_{za})$.

Рис. 2. Покомпонентное сложение векторов.

Абсолютное значение равнодействующей можно рассчитать так:

$F = \sqrt{(F_{xb} + F_{xa})^2 + (F_{yb} + F_{ya})^2 + (F_{zb} + F_{za})^2}$

Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

Разберем правила треугольника и параллелограмма. Графически это выглядит так:

Рис. 3. Правило треугольника и параллелограмма.

Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути - это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

Задачи

  • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

Решение

Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

Поэтому запишем:

$\vec F = \vec F_1 + \vec F_2 = (5+3, 0+3) = (8, 3)$
Абсолютное значение равнодействующей силы:

$F = \sqrt{8^2 + 3^2} = \sqrt{64 + 9} = 8,5 Н$

Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

$F_1 = \sqrt{5^2 + 0^2} = 5 Н$

$F_2 = \sqrt{3^2 + 3^2} = 4,2 Н$

Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

$F = \sqrt{F_1^2 + F_2^2 - 2F_1F_2 cos135} = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 sin45} = \sqrt{25 + 18 + 2 \cdot 5 \cdot 4,2 \cdot sin45} = 8,5 Н$

  • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

Решение

Достаточно сложить иксовые компоненты векторов:

$F = -5 – 2 + 7 = 0$

Что мы узнали?

В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 175.

Пусть, к абсолютно твердому телу приложена система N сил (F 1 , F 2 , … F N ), расположенных в пространстве так, что их линии действия пересекаются в одной точке О (рисунок 1).

Такую систему сил называют системой сходящихся сил. Упростим систему сходящихся сил, т.е. решим первую задачу статики.

Приведение к равнодействующей

Докажем, что данная система сил эквивалентна одной силе, т.е. приводится к равнодействующей силе.

Рисунок 1

В самом деле, так как сила есть вектор скользящий, то все силы данной системы можно перенести вдоль линий их действия в точку О .

Далее, по четвертой аксиоме , силы F 1 и F 2 можно заменить их равнодействующей R 1,2 (рисунок 1), которая определяется диагональю параллелограмма, построенного на этих силах как на сторонах, и направленной по этой диагонали, т.е.

(F 1 , F 2) ~ R 1,2 ,

(R 1,2 F 3) ~ (F 1 , F 2 , F 3) ~ R 1,2,3 ,

где R 1,2,3 =F 1 +F 2 +F 3 и т.д.

Для системы N сил окончательно будем иметь

(F 1 F 2 … F N) ~ R * ,

R * = F 1 + F 2 + … + F N = ∑ F i . (1)

На рисунке 2, a показано построение равнодействующей указанным способом на примере системы, состоящей из четырех сил. Однако процесс определения равнодействующей удобнее вести иным путем, с помощью построения так называемого силового многоугольника.

Силовой многоугольник

Из конца вектора силы F 1 (точки В ) проводим вектор ВС , геометрически равный силе F 2 С ) проводим вектор СD равный силе F 3 . Из конца этого вектора (точки D ) проводим вектор DE , равный силе F 4 .

Рисунок 2

Полученный многоугольник ABCDE называется силовым многоугольником . Процесс его построения хорошо виден на рисунке 2, б. Стороны силового многоугольника называются составляющими силами .

Вектор АЕ , соединяющий начало А первой силы с концом Е последней силы и направленный навстречу составляющим силам, называется замыкающей стороной силового многоугольника .

Следовательно, равнодействующая системы сходящихся сил изображается в выбранном масштабе замыкающей силового многоугольника, построенного на составляющих силах.

Нахождение равнодействующей системы сходящихся сил по правилу силового многоугольника называется векторным или геометрическим сложением сил.

Таким образом, мы доказали, что система сходящихся сил в общем случае эквивалентна одной силе, т.е. равнодействующей, которая приложена в точке пересечения линий действия всех сил и равна их геометрической сумме.

Вычисление равнодействующей

Для аналитического определения равнодействующей найдем ее проекции R x , R y , R z на оси декартовой системы координат. Имеем

R x = F kx ,
R y = F ky ,
R z = F kz . (2)

Тогда величина равнодействующей определится следующей формулой:

Для определения направления равнодействующей R* воспользуемся обычными выражениями для направляющих косинусов:

cos α = R x /R , cos β = R y /R , cos γ = R z /R . (5)

Здесь α , β , γ — углы между положительным направлением осей координат и равнодействующей.

Это векторная сумма всех сил, действующих на тело.


Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Взаимосвязь со вторым законом Ньютона

Вспомним закон Ньютона:

Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.


Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно . Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.

Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.


Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело; затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения. Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.

Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.



Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.



Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Блок - механическое устройство, колесо, вращающееся вокруг своей оси. Блоки могут быть подвижными и неподвижными.

Неподвижный блок используется лишь для изменения направления силы.

Тела, связанные нерастяжимой нитью, имеют одинаковые по величине ускорения.

Подвижный блок предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то для подъёма груза потребуется сила вдвое меньше, чем вес груза. Действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом.

Ускорение тела А в два раза меньше ускорения тела В.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст.


2.3. Равнодействующая сил

2.3.1. Равнодействующая сил

Силу, заменяющую собой действие на тело нескольких сил, называют равнодействующей ; равнодействующая сила равна векторной сумме сил, приложенных к данному телу:

F → = F → 1 + F → 2 + ... + F → N ,

где F → 1 , F → 2 , ..., F → N - силы, приложенные к данному телу.

Равнодействующую двух сил удобно находить графически по правилу параллелограмма (рис. 2.14, а ) или треугольника (рис. 2.14, б ).

Рис. 2.14

Для сложения нескольких сил (вычисления равнодействующей) используют следующий алгоритм :

1) вводят систему координат и записывают проекции всех сил на координатные оси:

F 1 x , F 2 x , ..., F Nx ,

F 1 y , F 2 y , ..., F Ny ;

2) вычисляют проекции равнодействующей как алгебраическую сумму проекций сил:

F x = F 1 x + F 2 x + ... + F Nx ,

F y = F 1 y + F 2 y + ... + F Ny ;

3) модуль равнодействующей вычисляют по формуле

F = F x 2 + F y 2 .

Рассмотрим частные случаи равнодействующей.

Силу взаимодействия тела с горизонтальной опорой , по которой может происходить движение тела, рассчитывают как равнодействующую силы трения и силы реакции опоры (рис. 2.15):

Рис. 2.15

F вз = F тр 2 + N 2 ,

где F → тр - сила трения скольжения или покоя; N → - сила реакции опоры.

Силу взаимодействия тела с комбинированной опорой (например, креслом автомобиля, самолета и т.п.) рассчитывают как равнодействующую сил давления на вертикальную и горизонтальную части опоры (рис. 2.16):

F → вз = F → гор + F → верт,

где F → гор - сила давления, действующая на тело со стороны горизонтальной части опоры (численно равная весу тела); F → верт - сила давления, действующая на тело со стороны вертикальной части опоры (численно равная силе инерции).

Рис. 2.16

Частные случаи равнодействующей:

Равнодействующая силы тяжести и силы Архимеда называется подъемной силой (рис. 2.17):

ее модуль вычисляется по формуле

F под = F А − m g ,

где F → А - сила Архимеда (выталкивающая сила); m g → - сила тяжести.

Рис. 2.17

Частные случаи равнодействующей:

Если под влиянием нескольких сил тело равномерно движется по окружности, то равнодействующая всех приложенных к телу сил является центростремительной силой (рис. 2.18):

F → ц.с = F → 1 + F → 2 + ... + F → N .

где F → 1 , F → 2 , ..., F → N - силы, приложенные к телу.

Модуль центростремительной силы, направленной по радиусу к центру окружности, может быть вычислен по одной из формул:

F ц.с = m v 2 R , F ц.с = m ω 2 R , F ц.с = m v ω ,

где m - масса тела; v - модуль линейной скорости тела; ω - величина угловой скорости; R - радиус окружности.

Рис. 2.18

Пример 21. По дну водоема, наклоненному под углом 60° к горизонту, начинает скользить тело массой 10 кг, полностью находящееся в воде. Найти модуль равнодействующей всех сил, приложенных к телу, если между телом и дном водоема воды нет, а коэффициент трения составляет 0,15.

Решение. Так как между телом и дном водяная прослойка отсутствует, то сила Архимеда на тело не действует.

Искомой величиной является модуль векторной суммы всех сил, приложенных к телу:

F → = F → тр + m g → + N → ,

где N → - сила нормальной реакции опоры; m g → - сила тяжести; F → тр - сила трения. Указанные силы и система координат изображены на рисунке.

Вычисление модуля результирующей силы F проведем в соответствии с алгоритмом.

1. Определим проекции сил, приложенных к телу, на координатные оси:

  • на ось Ox :

проекция силы трения

F тр x = − F тр = − μ N ;

проекция силы тяжести

(m g) x = m g sin 60 ° = 0,5 3 m g ;

проекция силы реакции опоры

N x = 0;

  • на ось Оу :

проекция силы трения

F тр y = 0 ;

проекция силы тяжести

(m g) y = − m g cos 60 ° = − 0,5 m g ;

проекция силы реакции опоры

N y = N ,

где m - масса тела; g - модуль ускорения свободного падения; µ - коэффициент трения.

2. Вычислим проекции равнодействующей на координатные оси, суммируя соответствующие проекции указанных сил:

F x = F тр x + (m g) x = − μ N + 0,5 3 m g ;

F y = (m g) y + N y = − 0,5 m g + N .

Движение по оси Oy отсутствует, т.е. F y = 0, или, в явном виде:

− 0,5 m g + N = 0 .

Отсюда следует, что

N = 0,5 m g ,

что позволяет получить формулу для расчета силы трения:

F тр = μ N = 0,5 μ m g .

3. Искомое значение равнодействующей:

F = F x 2 + F y 2 = | F x | = − 0,5 μ m g + 0,5 3 m g = 0,5 m g (3 − μ) .

Произведем вычисление:

F = 0,5 ⋅ 10 ⋅ 10 (3 − 0,15) = 79 Н.

Пример 22. Тело массой 2,5 кг движется горизонтально под действием силы, равной 45 Н и направленной под углом 30° к горизонту. Определить величину силы взаимодействия тела с поверхностью, если коэффициент трения скольжения равен 0,5.

Решение. Силу взаимодействия тела и опоры найдем как равнодействующую силы трения F → тр и силы нормальной реакции опоры N → :

F → вз = F → тр + N → ,

F вз = F тр 2 + N 2 .

Силы, приложенные к телу, показаны на рисунке.

Модуль силы нормальной реакции опоры определяется формулой

N = m g − F sin 30 ° ,

а модуль силы трения скольжения -

F тр = µN ,

где m - масса тела; g - модуль ускорения свободного падения; µ - коэффициент трения; F - модуль силы, вызывающей движение тела.

С учетом выражений для N и F тр формула для расчета искомой силы принимает вид:

F вз = (μ N) 2 + N 2 = N μ 2 + 1 = (m g − F sin 30 °) μ 2 + 1 .

Выполним расчет:

F вз = (2,5 ⋅ 10 − 45 ⋅ 0,5) (0,5) 2 + 1 ≈ 2,8 Н.

Пример 23. Во сколько раз изменится подъемная сила, если с аэростата сбросить балласт, равный половине его массы? Плотность воздуха считать равной 1,3 кг/м 3 , массу аэростата с балластом - 50 кг. Объем аэростата составляет 50 м 3 .

Решение. Подъемная сила, действующая на аэростат, является равнодействующей силы Архимеда F → А и силы тяжести m g → :

F → под = F → А + m g → ,

модуль которой определяется формулой

F под = F A − mg ,

где F A = ρ возд gV - модуль силы Архимеда; ρ возд - плотность воздуха; g - модуль ускорения свободного падения; V - объем аэростата; m - масса аэростата (с балластом или без него).

Модуль подъемной силы может быть рассчитан по формулам:

  • для аэростата с балластом

F под 1 = ρ возд g V − m 1 g ,

  • для аэростата без балласта

F под 2 = ρ возд g V − m 2 g ,

где m 1 - масса аэростата с балластом; m 2 - масса аэростата без балласта.

Искомое отношение модулей подъемных сил составляет

F под 2 F под 1 = ρ возд V − m 2 ρ возд V − m 1 = 1,3 ⋅ 50 − 25 1,3 ⋅ 50 − 50 ≈ 2,7 .

Пример 24. Модуль равнодействующей всех сил, действующих на тело, равен 2,5 Н. Определить в градусах угол между векторами скорости и ускорения, если известно, что модуль скорости остается постоянным.

Решение. Скорость тела не изменяется по величине. Следовательно, тело обладает только нормальной составляющей ускорения a → n ≠ 0 . Такой случай реализуется при равномерном движении тела по окружности.

Равнодействующая всех сил, приложенных к телу, является центростремительной силой и показана на рисунке.

Векторы силы, скорости и ускорения имеют следующие направления:

  • центростремительная сила F → ц.с направлена к центру окружности;
  • вектор нормального ускорения a → n направлен так же, как и сила;
  • вектор скорости v → направлен по касательной к траектории движения тела.

Следовательно, искомый угол между векторами скорости и ускорения равен 90°.

>> Равнодействующая сила

Отослано читателями из интернет-сайтов

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Close