Непрерывную с. в. можно задать, используя функцию, которую называют плотностью распределения или плотностью вероятности, или дифференциальной функцией распределения.

Плотностью распределения вероятностей непрерывной с. в. Х называют функцию f(x) – первую производную от функции распределения F(x):

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Для описания распределения вероятностей дискретной с. в. плотность распределения не применима.

Вероятностный смысл плотности распределения.

Таким образом, предел отношения вероятности того, что непрерывная с. в. примет значение, принадлежащее интервалу (x, x +∆x), к длине этого интервала (при ∆x → 0) равен значению плотности распределения в точке х.

Функция плотности характеризует каждое значение непрерывной случайной величины в отдельности, а не целый диапазон как это имеет место для функции распределения.

Вероятность попадания непрерывной с. в. в заданный интервал.

По формуле Ньютона – Лейбница:

P{a < X  b}= F(b) – F(a),

таким образом

Нахождение функции распределения по известной функции плотности.

Полагая в предыдущей формуле а = -∞, b = х, и заменив переменную интегрирования х на t имеем:

F(х) = P{X  х}=P{-∞< X  х},

следовательно

Свойства плотности распределения

Свойство 1. Плотность распределения – неотрицательная функция: f(x)0 (т.к. интегральная функция распределения – неубывающая функция, а плотность распределения ее первая производная).

Свойство 2:

Доказательство. Несобственный интеграл
выражает вероятность события, состоящего в том, что случайная величина примет значение, принадлежащая интервалу (-∞, ∞). Очевидно, такое событие достоверно, следовательно, вероятность его равна единице.

Геометрически это означает, что вся площадь криволинейной трапеции, ограниченной осью 0х и кривой распределения, равна единице.

Вчастности, если все возможные значения случайной величины принадлежат интервалу (а,b), то
.

Возможный график плотности распределения (пример)

f 1 (x) – плотность распределения размера выигрыша в 1-й игре

f 2 (x) – плотность распределения размера выигрыша во 2-ой игре

Какая игра предпочтительней?

Числовые характеристики случайных величин. .

Данные характеристики позволяют решать многие задачи, не зная закона распределения случайных величин.

Характеристики положения случайной величины на числовой оси.

    Математическое ожидание это есть среднее взвешенное значений случайной величины Х, в которое абсцисса каждой точки х i входит с «весом», равным соответствующей вероятности.

Математическое ожидание иногда называют просто средним значением с.в.

Обозначение: m x или M [X].

Для дискретной случайной величины

M [X] =

Для непрерывной случайной величины

    Мода – это наиболее вероятное значение случайной величины (то для которого вероятность p i , или плотность распределения f(x) достигает максимума).

Обозначение: 

Различают унимодальные распределения (имеют одну моду), полимодальные распределения (имеют несколько мод) и анимодальные (не имеют моды)

унимодальное

    Медиана – это такое значение случайной величины х m , для которого выполняется следующее равенство:

P{X < х m }= P{X > х m }

Медиана делит площадь,ограниченную f(x), пополам

Если плотность распределения случайной величины симметрична и унимодальна, то М[X],  и х m совпадают

М[X], , х m – неслучайные величины

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

P (х X х + Δх ) = F (х + Δх ) – F (х ),

т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

f (x ) = F ′(x ). (4.8)

Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

Отметим свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция , т.е.

Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

Рис. 4.4 Рис. 4.5

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 4.5. Функция f (x ) задана в виде:

Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

, откуда А = .

б) Функцию распределения находим, используя свойство 3 :

Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

Если х > 2, то f (x ) = 0 и, следовательно

в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }

Close