Свет распространяется прямолинейно только в однородной среде. Если свет подходит к границе раздела двух сред, он изменяет направление распространения.

Кроме того, часть света возвращается в первую среду. Это явление называется отражением света . Луч света, идущий к границе раздела сред в первой среде (рис. 16.5), называется падающим (а) . Луч. остающийся в первой среде после взаимодействия на границе раздела сред, называется отраженным (b) .  

Угол \(\alpha\) между падающим лучом и перпендикуляром, восставленным к отражающей поверхности в точке падения луча, называется углом падения .

Угол \(\gamma\) между отраженным лучом и тем же перпендикуляром называется углом отражения .

Еще в III в. до н.э. древнегреческим ученым Евклидом опытным путем были открыты законы отражения. В современных условиях проверку этого закона можно провести с помощью оптической шайбы (рис. 16.6), состоящей из диска, по окружности которого нанесены деления, и из источника света, который можно перемещать по краю диска. В центре диска закрепляют отражающую поверхность (плоское зеркало). Направляя свет на отражающую поверхность, измеряют углы падения и углы отражения.

Законы отражения:

1.Лучи падающий, отраженный и перпендикуляр, восставленный к границе двух сред в точке падения луча, лежат в одной плоскости.

2.Угол отражения равен углу падения:

\(~\alpha=\gamma\)

Законы отражения можно вывести теоретически, пользуясь принципом Ферма.

Пусть на зеркальную поверхность падает свет из точки А. В точке А 1 собираются лучи, отраженные от зеркала (рис. 16.7). Предположим, что свет может распространяться двумя путями, отражаясь от точек О и О". Время, которое потребуется свету, чтобы пройти путь АОА 1 , можно найти по формуле \(t=\frac{AO}{\upsilon}+\frac{AO_1}{\upsilon}\), где \(~\upsilon\) - скорость распространения света.

Кратчайшее расстояние от точки А до зеркальной поверхности обозначим через l, а от точки А 1 - через i 1 .

Из рисунка 16.7 найдем

\(AO=\sqrt{l^2+x^2}\); \(OA_1=\sqrt{(L-x)^2+l_1^2}\).

\(t=\frac{\sqrt{l^2+x^2}+\sqrt{(L-x)^2+l_1^2}}{\upsilon}\)

Найдем производную

\(t"_x=\frac{1}{\upsilon}\Bigr(\frac{2x}{2\sqrt{l^2+x^2}}+\frac{2(L-x)(-1)}{2\sqrt{(L-x)^2+l_1^2}}\Bigl)=\frac{1}{\upsilon}\Bigr(\frac{x}{\sqrt{l^2+x^2}}-\frac{L-x}{\sqrt{(L-x)^2+l_1^2}}\Bigl) =\frac{1}{\upsilon}\Bigr(\frac{x}{AO}-\frac{L-x}{OA_1}\Bigl) \).

Из рисунка видим, что \(\frac{x}{AO}=\sin \alpha\); \(\frac{L-x}{OA_1}=\sin \gamma\).

Следовательно, \(t"_x=\frac{1}{\upsilon}(\sin \alpha-\sin \gamma)\).

Для того чтобы время t было минимально, производная должна быть равна нулю. Таким образом, \(\frac{1}{\upsilon}(\sin \alpha-\sin \gamma)=0\). Отсюда \(~\sin \alpha = \sin \gamma\), а так как углы \(~\alpha\) и \(~\gamma\) - острые, то отсюда следует равенство углов\[~\gamma=\alpha\].

Мы получили соотношение, выражающее второй закон отражения. Из принципа Ферма вытекает и первый закон отражения: отраженный луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, так как если бы эти лучи лежали в разных плоскостях, то путь AOA 1 не был бы минимальным.

Падающий и отраженный лучи обратимы, т.е. если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего - закон обратимости световых лучей.

В зависимости от свойств границы раздела сред отражение света может быть зеркальным и диффузным (рассеянным).

Зеркальным называется отражение, при котором падающий на плоскую поверхность (рис. 16.8) параллельный пучок лучей после отражения остается параллельным.

Шероховатая поверхность отражает параллельный падающий на нее пучок света по всевозможным направлениям (рис. 16.9). Такое отражение света называют диффузным .

Соответственно различают зеркальные и матовые поверхности.

Следует отметить, что это относительные понятия. Поверхностей, отражающих только зеркально, не существует. В большинстве случаев имеется лишь максимум отражения в направлении угла зеркального отражения. Этим объясняется то, что мы видим зеркало и другие зеркально отражающие поверхности со всех сторон, а не только в одном направлении, в котором они отражают свет.

Одна и та же поверхность может быть зеркальной и матовой в зависимости от длины волны падающего света.

Если граница имеет вид поверхности, размеры d неровностей которой меньше длины волны света \(\lambda\), то отражение будет зеркальным (поверхность капли ртути, отполированная металлическая поверхность и т.д.), если \(d \gg \lambda\), отражение будет диффузным. Чем лучше обработана поверхность, тем большая доля падающего света отражается в направлении угла зеркального отражения, а меньшая - рассеивается.

Рассеянный свет возникает вследствие мелких дефектов полировки, царапин, мельчайших пылинок, имеющих величину порядка нескольких микронов.

Поверхность, которая равномерно рассеивает падающий свет во все стороны, называют абсолютно матовой . Абсолютно матовых поверхностей также не существует. К абсолютно матовым поверхностям близки поверхности неглазурованного фарфора, чертежной бумаги, снега.

Даже для одного и того же излучения матовая поверхность может стать зеркальной, если увеличить угол падения. Диффузно отражающие поверхности могут отличаться и по величине коэффициента отражения \(\rho=\frac{W_{OTP}}{W} \), показывающего, какую часть энергии W падающего на поверхность светового пучка составляет энергия W отр отраженного светового пучка.

Белая бумага для рисования имеет коэффициент отражения, равный 0,7-0,8. Очень высокий коэффициент отражения для поверхностей, покрытых окисью магния, - 0,95 и очень малый для черного бархата - 0,01-0,002.

Заметим, что зависимость отражения и поглощения от частоты колебаний чаще всего имеет избирательный характер.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 457-460.

Солнечный свет представляет собой электромагнитное излучение, поэтому для него характерны такие феномены, как отражение и преломление. Рассмотрим закон отражения света при его переходе из одной среды в другую, при этом будем использовать представление видимых электромагнитных волн в виде лучей.

Как известно, свет распространяется прямолинейно во всякой однородной прозрачной среде. Как только луч света достигает поверхности раздела двух прозрачных сред, то с ним происходят два явления:

  1. Одна часть светового пучка отражается обратно в первую прозрачную среду под определенным углом, то есть отражается.
  2. Вторая часть светового пучка проникает во вторую среду и продолжает распространяться уже в ней, но при этом изменяет на некоторый угол направление своего распространения, то есть преломляется.

Оба явления описываются с помощью законов отражения и преломления света соответственно.

Эти физические явления демонстрирует рисунок ниже, на котором видно, что падающий луч света при переходе через границу двух прозрачных сред разделяется на два пучка, один из них (меньший) отражается, а второй пучок (больший) продолжает распространяться дальше, переходя в другую среду.

Законы отражения света

Под отражением света в физике понимают такое изменение направления распространения волны, после того как она падает на границу между двумя средами, при котором волна снова возвращается в среду, откуда она пришла.

После того как сформулирован закон отражения света, отметим, что благодаря существованию этого явления можно видеть изображения разных предметов в зеркале, на поверхности воды или на какой-либо другой блестящей поверхности. Физически отражение света происходит, когда свет падает на какую-либо поверхность, сталкивается с ней и снова возвращается в первоначальную среду своего распространения, образуя угол, в точности равный углу падающего на эту поверхность луча. Эта поверхность называется отражающей. В отличие от явления преломления, феномен отражения - это изменение направления распространения волны в той же самой среде.

В физике законы отражения света формулируются следующим образом:

  1. Падающий на поверхность раздела сред луч, отраженный луч и нормаль к этой поверхности лежат в одной плоскости.
  2. Угол падения равен углу отражения. Формула закона отражения света имеет вид: θ пад. = θ отр. .

Зеркальное и диффузионное отражение

Отражающая поверхность может быть гладкой, но также может иметь и неровности. В связи с этим различают два типа отражения света:

  1. Зеркальное. Если неровности на отражающей поверхности малы по сравнению с длиной падающей волны, тогда пучок света отражается в определенном направлении. Здесь можно привести пример поверхности плоского зеркала, закона отражения света для которой можно применять.
  2. Диффузионное. Если неровности поверхности сравнимы с длиной световой волны, тогда каждая часть падающего пучка отражается от различных неровностей, при этом закон отражения света остается справедливым для каждого факта отражения, но поскольку отраженные пучки света начинают распространяться в различных направлениях, получается, что начальный пучок распадается на множество мелких пучков. В таких случаях говорят, что свет рассеивается. Примером диффузионного отражения является отражение света от деревянной поверхности.

Таким образом, если после зеркального отражения свет распространяется в конкретном направлении, то после диффузионного отражения свет "распыляется".

Квантовомеханическое обоснование процесса отражения

Свет - это пучок фотонов различной частоты. Любое взаимодействие фотонов с материей описывается через процессы поглощения и испускания. Когда фотон достигает молекулы вещества, то он сразу же ею поглощается, переводя ее электронную оболочку в возбужденное состояние, то есть в состояние с повышенной энергией. Практически мгновенно после поглощения фотона электронная система переходит в свое основное состояние, и этот процесс сопровождается испусканием фотона в произвольном направлении. Закон отражения света с квантовомеханической точки зрения объясняется как наиболее вероятное направление испускания фотонов, которое наблюдается в виде отражения.

Явление обратного отражения

Феномен обратного отражения, или ретроотражения, заключается в способности некоторых поверхностей или объектов отражать падающий на них пучок света обратно к источнику, от которого он пришел, независимо от того, под каким углом на них падает этот свет.

Такое поведение можно наблюдать в случае плоского зеркала, но только тогда, когда световой пучок падает на него перпендикулярно, то есть угол падения равен 90°.

Простой ретрорефлектор можно изготовить, если соединить два зеркала перпендикулярно друг к другу. Изображение, которое дает такой прибор, всегда того же размера, что и оригинальное, но будет перевернутым. При этом не важно, под какими углами на этот ретрорефлектор падают световые лучи, он всегда их отражает на 180°. Ниже на рисунке приведен этот ретрорефлектор, и продемонстрированы его физические свойства.

Ограниченное ретроотражение и его использование

Явление обратного отражения в настоящее время широко используется при производстве автомобилей, в частности при изготовлении поверхности металлических пластин, на которых пишутся номера.

Если на поверхность нанести много маленьких отражающих сфер, то можно добиться того, чтобы она отражала свет не точно обратно, а под некоторым небольшим углом. В таком случае говорят об ограниченной способности ретроотражателя. Такого же эффекта можно добиться, если нанести на поверхности вместо отражающих сфер маленькие пирамидки.

При изготовлении номеров для автомобилей не нужно, чтобы они отражали свет идеально обратно, а необходимо, чтобы отраженный пучок света был почти параллельным к падающему пучку. Благодаря этому свет, падающий на номера автомобиля из фар находящегося сзади него другого автомобиля, отражается от этих номеров, попадает в глаза водителю, и он видит номер движущейся впереди машины.

Ретроотражение и оптические аберрации

Под оптической аберрацией понимают явление в физике, при котором полученное в какой-либо оптической системе изображение оказывается нечетким. Происходит это потому, что выходящий из определенной точки объекта луч света не возвращается точно в одну точку. Причинами аберрации могут быть геометрические несовершенства оптических систем, а также различная отражающая способность для разных длин волн видимого света.

Ретроотражение используется для нивелирования оптических аберраций. Делается это простым образом, полученное в оптической системе изображение объекта через ретроотражатель заново направляется в эту систему. Функция ретроотражателя заключается не только в том, что он обратно возвращает все падающие на него лучи, но и меняет волновой фронт электромагнитной волны на противоположный.

Преломление и закон полного отражения света

Под преломлением света понимают изменение направления его распространения при переходе через границу сред, имеющих различные оптические свойства. В частности скорость распространения света в различных прозрачных средах отличается, и она всегда меньше скорости света в вакууме.

Для описания явления преломления света вводят показатель преломления среды n, который равен отношению скоростей света в вакууме и среде, то есть n = c/v. Закон преломления света математически выражается следующим образом: sin(θ пад.)/sin(θ прел.) = n 2 /n 1 = v 1 /v 2 , здесь θ пад. - угол между падающим лучом и нормалью к поверхности, θ прел. - угол между преломленным лучом и нормалью к поверхности, n 1 , v 1 и n 2 , v 2 - показатель преломления и скорость распространения света для первой среды и для второй среды соответственно.

Как было выше сказано, когда свет проходит через границу двух прозрачных сред, существует отраженный и преломленный лучи. Если θ прел. = 90°, то преломленный луч будет идти параллельно поверхности, иными словами, он не будет наблюдаться. Такая ситуация возможна при условии, что угол θ пад. больше некоторого критического угла θ кр. , а n 1 > n 2 . Критический угол определяется так: θ кр. = arcsin(n 2 /n 1). Всякий луч света, который падает на эту поверхность под углом большим, чем θ кр. , испытывает полное отражение.

Применение явления полного отражения

Феномен полного отражения используется человеком в различных областях жизнедеятельности. Наиболее популярным его использованием является оптическое световолокно, применяемое в телекоммуникациях и медицине.

Если говорить простыми словами, то оптическое волокно представляет собой гибкий кабель, сделанный из прозрачного материала, показатель преломления которого больше, чем показатель преломления среды, окружающей этот кабель. В результате пущенный под определенным углом пучок света внутрь такого волокна достигает противоположного его конца практически без потери своей интенсивности, поскольку на своем пути он испытывает только полные отражения.

Впервые закон отражения упоминается в «Катоптрике» Евклида , датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

Смотреть что такое "Отражение света" в других словарях:

    Явление, заключающееся в том, что при падении света (оптического излучения) из первой среды на границу раздела со второй средой вз ствие света с в вом приводит к появлению световой волны, распространяющейся от границы раздела обратно в первую… … Физическая энциклопедия

    Возвращение световой волны при ее падении на поверхность раздела двух сред с различными показателями преломления обратно в первую среду. Различают отражение света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Большой Энциклопедический словарь

    ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, обратно в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L?… … Современная энциклопедия

    Отражение света - ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, “обратно” в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L … Иллюстрированный энциклопедический словарь

    отражение света - Явление, состоящее в том, что свет, падающий на поверхность раздела двух сред с различными коэффициентами преломления, частично или полностью возвращается в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая… … Справочник технического переводчика

    Явление, заключающееся в том, что при падении света (оптического излучения (См. Оптическое излучение)) из одной среды на границу её раздела со 2 й средой взаимодействие света с веществом приводит к появлению световой волны,… … Большая советская энциклопедия

    Возвращение световой волны при её падении на поверхность раздела двух сред с различными показателями преломления «обратно» в первую среду. Различают отражения света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Энциклопедический словарь

    отражение света - šviesos atspindys statusas T sritis fizika atitikmenys: angl. light reflection vok. Reflexion des Lichtes, f rus. отражение света, n pranc. réflexion de la lumière, f … Fizikos terminų žodynas

О́птика (от др.-греч. πτική появление или взгляд ) - раздел физики, рассматривающий явления, связанные с распространением электромагнитных волн преимущественно видимого и близких к нему диапазонов (инфракрасное и ультрафиолетовое излучение). Оптика описывает свойства света и объясняет связанные с ним явления. Методы оптики используются во многих прикладных дисциплин, включая электротехнику, физику, медицину (в частности, офтальмологию). В этих, а также в междисциплинарных сферах широко применяются достижения прикладной оптики.

Важнейшие понятия оптики: преломление и отражение света (ход лучей света на примере призмы).

Закон отражения:

1) Угол падения равен углу отражения.

2) Луч падающий, отраженный и перпендикуляр, вставленный в точку падения луча, лежат в одной плоскости.
Закон преломления:

1) Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

2) Падающий луч, переломленный луч и перпендикуляр к границе раздела двух сред в точке падения луча лежат в одной плоскости.


Природа света

Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:



Характеристики света

Длина световой волны λ зависит от скорости распространения волны в среде и связана с нею и частотой соотношением:

На практике принято считать, что показатель преломления среды является функцией длины волны: n = n (λ). Зависимость показателя преломления от длины волны (точнее -от частоты) проявляется в виде явления дисперсии света.

Характеристиками света являются:


  • спектральный состав, определяемый диапазоном длин волн света.

  • интенсивность, пропорциональная квадрату амплитуды электрического вектора электромагнитной волны.

  • поляризация, определяемая изменением пространственной ориентации электрического вектора по мере распространения волны в пространстве.

  • направление распространения луча света, совпадающее с направлением нормали к волновому фронту (при отсутствии явления двойного лучепреломления)
Скорость света

Универсальным и постоянным понятием является скорость света c= 3 . При распространении света в различных средах скорость света v уменьшается: υ = c / n , где n есть показатель преломления среды, характеризующий её оптические свойства и зависящий от частоты света: n = n (ν)

Шкала электромагнитных излучений


Геометрическая оптика

Геометрическая оптика или оптика луча , описывает распространение света термином луч. Работы Гюйгенса, Ньютона, Гука.

«Луч» в геометрической оптике - абстрактный геометрический объект, перпендикулярный фронту импульса фактических оптических волн. Геометрическая оптика описывает правила прохождения лучей через оптическую систему.

Если узкие пучки света, падающие на поверхность параллельно друг другу, идут после отражения также параллельно,

Зеркальное отражение


Отражение является зеркальным, если лучи падают на поверхность параллельно, отражаясь от поверхности, остаются параллельными.

Пример. Отражение в зеркале.


Рассеянное отражение.

Отражение является рассеянным если лучи падают на поверхность параллельно, но отражаются по все возможным направлениям.

Волновая оптика.

Физическая оптика или Волновая оптика основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу волны. Этот раздел оптики объясняет дифракцию, интерференцию, эффекты поляризации, аберрацию и природу других сложных эффектов.

Волна́ - изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины, например, плотности вещества, напряжённости электрического поля, температуры».

Интерференция

Интерференция – явление наложения волн, вследствие которого наблюдается устойчивое во времени усиление или ослабление результирующих колебаний в различных точках пространства. Это общее свойство волн любой природы.

Основные формулы интерференции.

Оптическая разность хода:

Δ=L 1 - L 2 .

Связь разности фаз Δφ колебаний с оптической разностью хо­да волн

Δφ=2πΔ/ λ ..

Условие максимумов интенсивности света при интерферен­ции

Δ=± (k =0, l ,2, 3, …).

Условие минимумов интенсивности света при интерферен­ции

Δ=± (2k+1) (λ /2).
Дифра́кция во́лн (лат. diffractus - буквально разломанный, переломанный) - явление огибания волной препятствия.

Д
ифракционные эффекты зависят от соотношения между длиной волны и характерным размером неоднородностей среды либо неоднородностей структуры самой волны.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Основные формулы дифракции:

Условие главных максимумов при дифракции света на дифракционной решетке при нормальном падении лучей

d sinφ=±k λ, k =0,1,2,3,…,

где d - период (постоянная) решетки; k - номер главного макси­мума; φ -угол между нормалью к поверхности решетки и нап­равлением дифрагирующих волн.

Разрешающая сила дифракционной решетки

где Δλ - наименьшая разность длин волн двух соседних спектраль­ных линий (λ и λ+Δλ), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N - число штрихов решетки; k - порядковый номер дифракцион­ного максимума.

Когере́нтность (от лат. cohaerens - «находящийся в связи») - скоррелированность нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени и при сложении колебаний получается колебание той же частоты.

Когерентность волны означает, что разность фаз между двумя точками не зависит от времени.

Без когерентности невозможно наблюдать такое явление, как интерференция.

Поляриза́ция волн - явление нарушения симметрии распределения возмущений в поперечной волне относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.

Поляризация – выделение одного направления колебаний характеристики волны. Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору.

Причиной возникновения поляризации волн может быть:


  • несимметричная генерация волн в источнике возмущения;

  • анизотропность среды распространения волн;

  • преломление и отражение на границе двух сред.

Дисперсия света

Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона).

Диспе́рсия све́та (разложение света ) - это явление зависимости абсолютного показателя преломления вещества от длины волны (или частоты ) света (частотная дисперсия), или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии , применяемый как название количественного соотношения, связывающего частоту и волновое число , применяется не только к электромагнитной волне , но к любому волновому процессу.

Призма - оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела - призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется .

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Список литературы.


  1. Открытая физика [Электронный ресурс]

  2. Мякишев, Г. Я.. Физика. 11 класс. [Текст]

  3. Картинки с сайтов:

  • http :// narod.ru/pic/

  • http :// fizika.ayp.ru/6/6_1.html

  • http://festival.1september.ru/articles/310913/pril2.doc

  • http:// ftl.kherson.ua/EDU/OC/Astronomy/content/chapter2/section1/paragraph1/theory.html

  • http://optika8.narod.ru/7.Ploskoe_zerkalo.htm

ТЕНЬ ПЛАМЕНИ

Осветите горящую свечу мощной электрической лампой. На экране из белого листа бумаги появится не только тень свечи, но и тень ее пламени

На первый взгляд кажется стран­ным, что сам источник света может иметь собственную тень. Объясняется это тем, что в пламени свечи есть непрозрачные раскаленные частицы и что очень велика разница в яр­кости пламени свечи и освещающего ее мощного источника света. Этот опыт очень хорошо наблюдать, когда свечу освещают яркие лучи Солнца.

ЗАКОН ОТРАЖЕНИЯ СВЕТА

Для этого опыта нам понадобятся: небольшое прямоугольное зеркало и два длинных карандаша.
Положите на стол лист бумаги и проведите на нем прямую линию. Поставьте на бумагу перпендикулярно проведенной линии зеркало. Что­бы зеркало не упало, позади него положите книги.


Для проверки строгой перпендикулярности нарисованной на бумаге линии к зеркалу проследите, чтобы
и эта линия и ее отражение в зеркале были прямолинейными, без излома у поверхности зеркала. Это мы с вами создали перпендикуляр.

В роли световых лучей в нашем опыте выступят карандаши. Положите карандаши на листок бумаги по разные стороны от начерченной линии концами друг к другу и к той точке, где линия упирается в зеркало.

Теперь проследите, чтобы отражения карандашей в зеркале и карандаши, лежащие перед зеркалом, образовывали прямые линии, без излома. Один из карандашей будет играть роль падающего луча, другой - луча отраженного. Углы между карандашами и начерченным перпендикуляром получаются равными друг другу.

Если теперь вы повернете один из карандашей (например, увеличивая угол падения), то обязательно нужно повернуть и второй карандаш, чтобы не было излома между первым карандашом и его продолжением в зеркале.
Всякий раз, изменяя угол между одним карандашом и перпендикуляром, нужно проделывать это и с другим карандашом, чтобы не нарушить прямолинейности светового луча, который карандаш изображает.


ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ

Бумага бывает разных сортов и отличается своей гладкостью. Но даже очень гладкая бумага не способна отражать, как зеркало, она совсем не похожа на зеркало. Если такую гладкую бумагу рассматривать через увеличительное стекло, то сразу можно увидеть ее волокнистое строение, разглядеть впадинки и бугорки на ее поверхности. Свет, падающий на бумагу, отражается и бугорками, и впадинками. Эта беспорядочность отражений создает рассеянный свет.

Однако и бумагу можно заставить отражать световые лучи по-другому, чтобы не получался рассеянный свет. Правда, даже очень гладкой бумаге далеко до настоящего зеркала, но все-таки и от нее можно добиться некоторой зеркальности.

Возьмите лист очень гладкой бумаги и, прислонив его край к переносице, повернитесь к окну (этот опыт надо делать в яркий, солнечный день). Ваш взгляд должен скользить по бумаге. Вы увидите на ней очень бледное отражение неба смутные силуэты деревьев, домов. И чем меньше будет угол между направлением взгляда и листом бумаги, тем яснее будет отражение. Подобным образом можно получить на бумаге зеркальное отражение свечи или электрической лампочки.

Чем же объяснить, что на бумаге, хоть и плохо, все-таки можно видеть отражение?
Когда вы смотрите вдоль листа, все бугорки бумажной поверхности загораживают впадинки и превращаются как бы в одну сплошную поверхность. Беспорядочных лучей от впадин мы уже не видим, они нам теперь не мешают видеть то, что отражают бугорки.


ОТРАЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ЛУЧЕЙ


Положите на расстоянии двух метров от настольной лампы (на одном с ней уровне) лист плотной белой бумаги. На одном краю бумаги укрепите расческу с крупными зубьями. Сделайте так, чтобы свет от лампы проходил на бумагу сквозь зубья расчески. Около самой расчески получится полоска тени от ее «спинки». На бумаге от этой теневой полоски должны идти параллельные полоски света, прошедшие между зубьями расчески

Возьмите небольшое прямоугольное зеркало и поставьте его поперек светлых полосок. На бумаге появятся полоски отраженных лучей.

Поверните зеркало, чтобы лучи падали на него под некоторым углом. Отражен­ные лучи тоже повернутся. Если мысленно провести перпендикуляр к зеркалу в месте падения какого-ни­будь луча, то угол между этим перпендикуляром и падающим лучом будет равен углу отраженного луча. Как бы вы ни изменяли угол падения лучей на отражающую поверхность, как бы ни поворачивали зеркало, всегда отраженные лучи будут выходить под таким же углом.

Если нет маленького зеркала, его можно заменить блестящей стальной линейкой или лезвием безопасной бритвы. Результат будет несколько хуже, чем с зеркалом, но все-таки опыт провести можно.

С бритвой или линейкой возможно проделать еще и такие опыты. Согните линейку или бритву и поставьте на пути параллельных лучей. Если лучи попадут на вогнутую поверхность, то они, отразившись, соберутся в одной точке.

Попав на выпуклую поверхность, лучи отразятся от нее веером. Для наблюдения этих явлений очень пригодится та тень, которая получилась от «спинки» расчески.

ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ

Интересное явление происходит с лучом света, который выходит из более плотной среды в менее плотную, например, из воды в воздух. Лучу света не всегда удается это сделать. Все зависит от того, под каким углом он пытается выйти из воды. Здесь угол - это угол, который луч образует с перпендикуляром к поверхности, через которую он хочет пройти. Если этот угол равен нулю, то он свободно выходит наружу. Так, если положить на дно чашки пуговицу и смотреть на нее точно сверху, то пуговица хорошо видна.

Если же увеличивать угол, то может наступить момент, когда нам будет казаться, что предмет исчез. В этот момент лучи полностью отразятся от поверхности, уйдут в глубину и до наших глаз не дойдут. Такое явление называется полным внутренним отражением или полным отражением.

Опыт 1

Сделайте из пластилина шарик диаметром 10- 12 мм и воткните в него спичку. Из плотной бумаги или картона вырежьте кружок диаметром 65 мм. Возьмите глубокую тарелку и натяните на ней параллельно диаметру две нитки на расстоянии трех сантиметров друг от друга. Концы ниток закрепите на краях тарелки пластилином или лейкопластырем.


Затем, проткнув шилом кружок в самом центре, вставьте в отверстие спичку с шариком. Расстояние между шариком и кружком сделайте около двух миллиметров. Положите кружок шариком вниз на натянутые нитки в центре тарелки. Если посмотреть сбоку, шарик должен быть виден. Теперь налейте в тарелку воду до самого кружка. Шарик исчез. Световые лучи с его изображением уже не дошли до наших глаз. Они, отразившись от внутрен­ней поверхности воды, ушли в глубь тарелки. Произошло полное отражение.


Опыт 2

Надо найти шарик из металла с ушком или отверстием, подвесить его на кусочке проволоки и покрыть копотью (лучше всего поджечь кусочек ваты, смоченный скипидаром, машинным или растительным маслом). Дальше налейте в тонкий стакан воды и, когда шарик остынет, опустите его в воду. Виден будет блестящий шарик с «черной косточкой». Это происходит потому, что частицы сажи удерживают воздух, который создает вокруг шарика газовую оболочку.

Опыт 3

Налейте в стакан воду и погрузите в нее стеклянную пипетку. Если ее рассматривать сверху, немного наклонив в воде, чтобы хорошо была видна ее стеклянная часть, она будет так сильно отражать световые лучи, что станет словно зеркальной, будто сделана из серебра. Но стоит нажать на резинку пальцами и набрать в пипетку воду, как сразу же иллюзия исчезнет, и мы увидим только стеклянную пипетку - без зеркального наряда. Зеркальной ее делала поверхность воды, соприкасавшаяся со стеклом, за которым был воздух. От этой границы между водой и воздухом (стекло в данном случае не учитывается) отражались полностью световые лучи и создавали впечатление зеркальности. Когда же пипетка наполнилась водой, воздух в ней исчез, полное внутреннее отражение лучей прекратилось, потому что они просто стали проходить в воду, заполнившую пипетку.

Обратите внимание на пузырьки воздуха, которые иногда бывают в воде на внутренней стороне стакана. Блеск этих пузырьков тоже результат полного внутреннего отражения света от границы воды и воздуха в пузырьке.

ХОД СВЕТОВЫХ ЛУЧЕЙ В СВЕТОВОДЕ

Хотя световые лучи распространяются от источника света по прямым линиям, можно заставить их идти и по кривому пути. Сейчас изготовляют тончайшие световоды из стекла, по которым световые лучи проходят большие расстояния с различными поворотами.

Простейший световод можно сделать довольно просто. Это будет струя воды. Свет, идя по такому световоду, встретив поворот, отражается от внутренней поверхности струи, не может вырваться наружу и идет дальше внутри струи до самого ее конца. Частично вода рассеивает небольшую долю света, и поэтому в темноте мы все-таки увидим слабо светящуюся струю. Если вода слегка забелена краской, светиться струя будет сильнее.
Возьмите шарик для настольного тенниса и проделайте в нем три отверстия: для крана, для короткой резиновой трубки и против этого отверстия третье - для лампочки от карманного фонаря. Лампочку вставьте внутрь шарика цоколем наружу и прикрепите к нему два провода, которые потом присоедините к батарейке от карманного фонаря. Шарик укрепите на кране с помощью изоляционной ленты. Все места соединений промажьте пластилином. Затем обмотайте шарик темной материей.

Откройте кран, но не очень сильно. Струя воды, вытекающая из трубки, должна, изгибаясь, падать недалеко от крана. Свет погасите. Присоедините провода к батарейке. Лучи света от лампочки пройдут через воду в отверстие, из которого вытекает вода. Свет пойдет по струе. Вы увидите лишь ее слабое свечение. Основной поток света идет по струе, не вырывается из нее даже там, где она изгибается.


ОПЫТ С ЛОЖКОЙ

Возьмите блестящую ложку. Если она хорошо отполирована, то даже кажется немножко зеркальной, что-то отражает. Закоптите ее над пламенем свечи, да почернее. Теперь ложка ничего уже не отражает. Копоть поглощает все лучи.

Ну, а теперь опустите закопченную ложку в стакан с водой. Смотри: заблестела, как серебро! Куда же копоть-то девалась? Отмылась, что ли? Вынимаешь ложку - черна по-прежнему...

Дело здесь в том, что частички копоти плохо смачиваются водой. Поэтому вокруг закопченной ложки образуется как бы пленка, как бы «водяная кожа». Словно мыльный пузырь, натянутый на ложку, как перчатка! Но мыльный пузырь ведь блестит, он отражает свет. Вот и этот пузырь, окружающий ложку, тоже отражает.
Можете, например, закоптить над свечой яйцо и погрузить его в воду. Оно будет там блестеть, как серебряное.

Чем чернее, тем светлее!

ПРЕЛОМЛЕНИЕ СВЕТА

Вы знаете, что луч света прямолинеен. Вспомните хотя бы луч, пробившийся сквозь щелку в ставне или в занавесе. Золотой луч, полный кружащихся пылинок!

Но… физики привыкли все проверять на опыте. Опыт со ставнями, конечно, очень нагляден. А что вы скажите об опыте с гривенником в чашке? Не знаете, этого опыта? Сейчас мы с вами его сделаем. Положите гривенник в пустую чашку и присядьте так, чтобы он перестал быть виден. Лучи от гривенника шли бы прямо в глаз, да край чашки загородил им дорогу. Но я сейчас устрою так, что вы снова увидите гривенник.

Вот я наливаю в чашку воду… Осторожно, потихоньку, чтобы гривенник не сдвинулся… Больше, больше…

Смотрите, вот он, гривенник!
Появился, словно бы всплыл. Или, вернее, он лежит на дне чашки. Но дно это будто бы поднялось, чашка «обмелела». Прямые лучи от гривенника к вам не доходили. Теперь лучи доходят. Но как же они огибают край чашки? Неужели гнутся или ломаются?

Можно в ту же чашку или в стакан наклонно опустить чайную ложечку. Смотрите, сломалась! Конец, погруженный в воду, переломился вверх! Вынимаем ложечку - она и целая, и прямая. Значит, лучи действительно ломаются!

Источники: Ф. Рабиза "Опыты без приборов", "Здравствуй физика" Л.Гальперштейн


Close