Поскольку при изобарическом процессе P постоянно, то после сокращения на P формула принимает вид

V 1 /T 1 =V 2 /T 2 ,

V 1 /V 2 =T 1 /T 2 .

Формула является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объём газа прямо пропорционален его абсолютной температуре.

Изотермический процесс

Процесс в газе, происходящий при постоянной температуре, называется изотермическим. Изотермический процесс в газе был изучен английским ученым Р.Бойлем и французским ученым Э. Мариотом. Установленная ими опытным путем связь получается непосредственно из формулы путем сокращения на T:

p 1 V 1 =p 2 V 2 ,

p 1 /p 2 =V 1 /V 2.

Формула является математическим выражением закона Бойля - Мариота : при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объёма газа на соответствующее давление есть величина постоянная:

График зависимости p от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рисунке 3 изображены изотермы для одной и той же массы газа, но при разных температурах Т. При изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

ρ 1 /ρ 2= p 1 /p 2

Зависимость давления газа от температуры при постоянном объеме

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными. Возьмем закрытый сосуд с газом и, будем нагревать его (рисунок 4). Температуру газа t будем определять с помощью термометра, а давление манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 0 С обозначим р 0 , а затем будем постепенно нагревать наружный сосуд и записывать значения р и t для газа.

Оказывается, что график зависимости р и t, построенный на основании такого опыта, имеет вид прямой линии (рисунок 5).

Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа. Из подобия треугольников на рисунке 5, а можно записать:

P 0 /OA=Δp/Δt,

l/OA=Δp/(p 0 Δt).

Если обозначить постоянною l/ОА через α, то получим

α = Δp//(p 0 Δt),

Δp= α p 0 Δt.

По смыслу коэффициент пропорциональности α в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина γ, характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объёме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 0 С, изменяется при нагревании на 1 0 С. Выведем единицу температурного коэффициента α в СИ:

α =l ΠA/(l ΠA*l 0 C)=l 0 C -1

При этом длина отрезка ОА получается равной 273 0 С. Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна – 273 0 С, а температурный коэффициент давления α =1/ОА=(1/273) 0 С -1 .




При решении задач обычно пользуются приближенным значением α равным α =1/ОА=(1/273) 0 С -1 . Из опытов значение α впервые было определено французским физиком Ж. Шарлем, который в 1787г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен (1/273,15) 0 С -1 . Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах α зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ. Выясним, как можно определить давление любого газа р, при произвольной температуре t.

Подставив эти значения Δр и Δt в формулу, получим

p 1 -p 0 =αp 0 t,

p 1 =p 0 (1+αt).

Поскольку α~273 0 С, при решении задач формулу можно использовать в следующем виде:

p 1 =p 0

К любому изопроцессу применим объединенный газовый закон с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объём V, формула после сокращения на V принимает вид

По закону Бойля V1: V2 = Р2: P1 при постоянной температуре

По закону Гей-Люсака V1: V2 = T1: T2 при постоянном давлении
P1: Р2 = T1: T2 при постоянном объёме
Из формул, представленных выше, можно заметить, что две из трех величин, могут рассматриваться как переменные, если третья постоянна. Нет такого состояния, при котором давление, объем и температура могли бы все рассматриваться как переменные.
Однако бывают случаи, когда все величины переменные, а один фактор неизвестен. В практических случаях такие задачи могут быть решены по аналогии с примерами ниже:
Газ при температуре 20 o C занимает объем 0,98 м 3 в цилиндре диаметром 50 мм, к поршню приложена сила 980Н. Каким будет смещение поршня, если сила, приложенная к поршню, удвоилась, а температура увеличилась до 50 o C?
Смещение поршня легко определить при задании изменений объема. Однако, в задаче задано только одно значение объема (0,98 м 3), а другое неизвестно.
Чтобы установить зависимости между всеми параметрами, которые являются переменными, изменения объема должны быть рассмотрены отдельно при двух фазах.

Случай А 1-ая фаза

Газ нагревается от температуры t = 20 o C, которая соответствует абсолютной температуре T1 = 20 + 273 = 293 o K, до температуры 50 o C, которая соответствует T2 = (50 + 273) =323 o K. Если давление на поршень остается постоянным с нагрузкой 980Н, то произойдет увеличение объема газа. По закону Гей-Люсака V1: V2 = T1: T2
Vх = (0,98 323)/293 =1,08 дм 3 (промежуточное значение)

2-ая фаза
Газ, достигнув объема Vх = 1,08 дм 3 в результате увеличения температуры до T2 (323 o K), теперь получает дополнительное воздействие - увеличилась сила, приложенная к поршню. В результате, оно возрастает до P2 = 980 2 = 1960 Н, а объем уменьшается, поскольку воздух сжимается поршнем. По закону Бойля Vх: V2 = P2: Р1 (Vх P1 = V2 P2)
Подставляя заданные значения:
V2 = (1,08 980)/1960 = 0,54 дм 3 (окончательное значение)

Отметим, что параметры P1 и Р2 были представлены как символы приложенной силы, а не единицы давления. Это - не ошибка, поскольку сила относится непосредственно к давлению в этом примере, так как диаметр поршня не изменяется.

Это подтверждается следующими вычислениями.
I. Площадь поверхности поршня в см 2 (3,14 D2)/4
Диаметр = 50 мм = 5 см S = (3,14 52)/4 = 19,6 см 2
Давление на каждой стадии теперь можно рассчитать.
II. Начальное давление P1=Начальная сила/Площадь поверхности = 980Н/19,6см 2 = 50Н/см 2 =5кг/см 2
Финальное давление P2= Финальная сила/Площадь поверхности = (980 2)/19,6 =100Н/см=10кг/см 2
При равенстве площадей поверхности поршня увеличение вдвое приложенной силы удвоит давление.
Подставляя заданные значения:
Vх P1 = V2 P2
V2 = (1,08 дм 3 50 Н/см 2)/100Н/см 2 = (1,08 дм 3 5 кг/см 2)/10кг/см 2 = 0,54 дм 3

Этот же самый результат получен в предыдущем вычислении.
Можно получить результат, непосредственно используя следующее выражение, которое является комбинацией из двух начальных формул:
(P 1 V1)/Т1 = (P2 V2)/Т2
В примере объем V2 требуется для того, чтобы вычислить перемещение поршня
V2 = (Р1 V1 T2)/(T1 P2) = (5 0,98 323)/(293 10) = 0,54 дм 2
Используя оба объема, можно вычислить изменение в положении поршня, применяя геометрию:
Объем = площадь поверхности высота Высота в см = объем в см 2 / площадь в см 2
Начальная высота = 980см 3 /19,6см 2 =50см. Финальная высота = 540см 3 /19,6см 2 =27,5см
Перемещение поршня = 50-27,5=22,5 см В этой задаче принималось, что нагревание газа произошло в результате увеличения температуры внешней среды.

Если вспомнить эксперимент с велосипедным насосом, когда воздух сжат и у него нет возможности расширяться, выделяется тепло, то есть температура воздуха возрастает и это тепло передается к внешним поверхностям насоса. Обратный процесс возникает, когда газ расширяется.
Если у газа есть возможность расшириться, его температура уменьшится.
Изменения температуры воздуха порождают:
I. Возникновение тепла на стадии сжатия.
II. Поглощение тепла на стадии расширения.

Изменения температуры могут быть рассчитаны, как показано, при использовании величин из предыдущего примера.
Количество газа при температуре 293°K занимает объем V1 =0,98 дм 3 при давлении 5 бар. Если давление повысить до 10 бар, объем уменьшится до V2=0,54 дм 3 .
Какой станет температура газа? Важно помнить, что закон Бойля работает только тогда, когда температура постоянна. Поэтому, при 293°K повышение давления от P1 до P2 приводит к уменьшению объема газа с V1 до Vх: V1: Vх = P2: P1 то есть. V1 P1 = Vх P2
Подставляя известные значения: Vх = (0,98 5)/10=0,49 дм 3
Используя закона Гей-Люсака и рассматривая давление как постоянную величину P2 (к которому уже отнесен объем Vх), можно записать:
Vх: V2 = Т1: Т2 то есть Vх T2 = V2 T1
Подставляя известные значения: T2 = (0,54 293)/0,49 = 323°K Это значение равно значению, которое дано в начальном примере.

Закон Гей-Люссака: при постоянном давлении объем газа изменяется прямо пропорционально абсолютной температуре.

Закон Бойля-Мариотта: при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа.

Газовые законы

Изучение свойств газообразных веществ и химических реакций с участием газов сыграло настолько важную роль в становлении атомно-молекулярной теории, что газовые законы заслуживают специального рассмотрения.

Экспериментальные исследования, по изучению химических реакций между газообразными веществами, привели Ж.-Л. Гей-Люссака (1805) к открытиюзакона объемных отношений: при неизменных температуре и давлении объемы реагирующих газов относятся друг к другу и к объ­емам газообразных продуктов реакции как небольшие целые числа . Так, при образовании хлорида водорода из простых веществ (H 2 + Cl 2 = 2HCl), объемы реагирующих и полученных веществ относятся друг к другу как 1:1:2, а при синтезе Н 2 О из простых веществ (2H 2 + О 2 = 2H 2 О) это соотношение – 2:1:2.

Эти пропорции нашли объяснение в законе Авогадро: в равных объемах разных газов при одинаковых условиях (температуре и давлении) содержится равное количество молекул . Молекулы простых газообразных веществ, таких как водород, кислород, хлор и др., состоят из двух атомов.

Из закона Авогадро вытекает два важных следствия:

Молекулярная масса (н. у.) газа или пара (M 1) равна произведению его относительной плотности (D) к любому другому газу на молекулярную массу последнего (M 2)

M 1 = D ∙ M 2 ;

D = M 1 / M 2 – отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении.

Например, азот тяжелее гелия в 7 раз, поскольку плотность азота по гелию равна:

D He (N 2) = M (N 2) / М (Не) = 28/4 =7

- моль любого газа при нормальных условиях (Р 0 = 1 атм или 101,325 кПа или 760 мм.рт.ст. и температура Т 0 = 273,15 К или 0°С) занимает объем 22,4 л.

Газообразное состояние вещества заданной массы характеризуется тре­мя параметрами: давлением Р , объемом V и температурой Т . Между этими величинами были экспериментально установлены следующие соотношения.

Р 2 / Р 1 = V 1 / V 2 , или РV = const.

V 1 / Т 1 = V 2 / Т 2 , или V/Т = const.

Р 1 / Т 1 = Р 2 / Т 2 , или Р/Т = const.

Эти три закона можно объединить в один универсальный газовый закон :

Р 1 V 1 / Т 1 = Р 2 V 2 / Т 2 , или РV /Т = const.

Это уравнение было установлено Б. Кла­пейроном (1834 г.). Значение постоянной в уравнении зависит только от количества вещества газа. Уравнение для одного моля газа было выведено Д.И. Менделеевым (1874 г.). Для одного моля газа постоян­ная называется универсальной газовой постоянной и обозначается R = 8,314 Дж/(моль К) = 0,0821 л∙атм/(моль∙К)


РV=RТ ,

Для произвольного количества газа ν правую часть этого уравнения надо умножить на ν :

РV= νRТ или РV= (т/М)RТ ,

которое называют уравнением Клапейрона-Менделеева. Это уравне­ние справедливо для всех газов в любых количествах и для всех зна­чений Р, V и Т , при которых газы можно считать идеальными.

2. Изохорический процесс . V- постоянен. P и T изменяются. Газ подчиняется закону Шарля. Давление, при постоянном объёме, прямо пропорционально абсолютной температуре

3. Изотермический процесс . T- постоянна. P и V изменяются. В этом случае газ подчиняется закону Бойля - Мариотта. Давление данной массы газа при постоянной температуре обратно пропорциональна объёму газа .

4. Из большого числа процессов в газе, когда изменяются все параметры, выделяем процесс, подчиняющийся объединенному газовому закону. Для данной массы газа произведение давление на объём, делённое на абсолютную температуру есть величина постоянная .

Этот закон применим для большого числа процессов в газе, когда параметры газа меняются не очень быстро.

Все перечисленные законы для реальных газов являются приближёнными. Погрешности увеличиваются с ростом давления и плотности газа.

Порядок выполнения работы:

1. часть работы .

1. Шланг стеклянного шара опускаем в сосуд с водой комнатной температуры (рис.1 в приложении). Затем шар нагреваем (руками, тёплой водой).Считая давление газа постоянным, напишите как объём газа зависит от температуры

Вывод:………………..

2. Соединим шлангом цилиндрический сосуд с миллиманометром (рис. 2). Нагреем металлический сосуд и воздух в нём с помощью зажигалки. Считая объём газа постоянным, напишите, как зависит давление газа от температуры.

Вывод:………………..

3. Цилиндрический сосуд, присоединённый к миллиманометру сожмем руками, уменьшая его объём (рис.3). Считая температуру газа постоянной, напишите, как зависит давление газа от объёма.

Вывод:……………….

4. Соединим насос с камерой от мяча и закачаем несколько порций воздуха (рис.4). Как изменилось давление объём и температура закаченного в камеру воздуха?

Вывод:………………..

5. Нальём в бутылку около 2 см 3 спирта, закроем пробкой со шлангом (рис. 5) , прикреплённым к нагнетающему насосу. Сделаем несколько качков до момента вылета пробки из бутылки. Как изменяются давление объём и температура воздуха (и паров спирта) после вылета пробки?



Вывод:………………..

Часть работы.

Проверка закона Гей - Люссака.

1. Нагретую стеклянную трубку достаём из горячей воды и опускаем открытым концом в небольшой сосуд с водой.

2. Удерживаем трубку вертикально.

3. По мере охлаждения воздуха в трубке вода из сосуда заходит в трубку (рис 6).

4. Находим и

Длина трубки и столба воздуха (в начале опыта)

Объём тёплого воздуха в трубке,

Площадь поперечного сечения трубки.

Высота столба воды, зашедшей в трубке при остывании воздуха в трубке.

Длина столба холодного воздуха в трубке

Объём холодного воздуха в трубке.

На основании закона Гей-Люссака У нас для двух состояний воздуха

Или (2) (3)

Температура горячей воды в ведре

Комнатная температура

Нам нужно проверить уравнение (3) и, следовательно закон Гей – Люссака.

5. Вычислим

6. Находим относительную погрешность измерения при измерении длины принимая Dl=0.5 см.

7. Находим абсолютную погрешность отношения

=……………………..

8. Записываем результат показания

………..…..

9. Находим относительную погрешность измерения Т, принимая

10. Находим абсолютную погрешность вычисления

11. Записываем результат вычисления

12. Если интервал определения отношения температур (хотя бы частично) совпадает с интервалом определения отношения длин столбов воздуха в трубке, то уравнение (2) справедливо и воздух в трубке подчиняется закону Гей- Люссака.

Вывод:……………………………………………………………………………………………………

Требование к отчёту:

1. Название и цель работы.

2. Перечень оборудования.

3. Нарисовать рисунки с приложения и сделать выводы для опытов 1, 2, 3, 4.

4. Написать содержание, цель, расчёты второй части лабораторной работы.

5. Написать вывод по второй части лабораторной работы.

6. Построить графики изопроцессов (для опытов 1,2,3) в осях: ; ; .

7. Решить задачи:

1. Определить плотность кислорода, если его давление равно 152 кПа, а средняя квадратичная скорость его молекул -545 м/с.

2. Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объём 500 л. Найти объём газа при нормальных условиях.

3. Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и давлении 5,07 МПа.

Приложение

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов.


Close