В природе существует очень много повторяющихся последовательностей:

  • времена года;
  • время суток;
  • дни недели…

В середине 19 века Д.И.Менделеев заметил, что химические свойства элементов также имеют определенную последовательность (говорят, что эта идея пришла ему во сне). Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. В современной таблице химические элементы выстроены по возрастанию атомного номера элемента (количество протонов в ядре атома).

Атомный номер изображен над символом химического элемента, под символом - его атомная масса (сумма протонов и нейтронов). Обратите внимание, что атомная масса у некоторых элементов является нецелым числом! Помните об изотопах! Атомная масса - это средневзвешенное от всех изотопов элемента, встречающихся в природе в естественных условиях.

Под таблицей расположены лантаноиды и актиноиды.

Металлы, неметаллы, металлоиды


Расположены в Периодической таблице слева от ступенчатой диагональной линии, которая начинается с Бора (В) и заканчивается полонием (Po) (исключение составляют германий (Ge) и сурьма (Sb). Нетрудно заметить, что металлы занимают бОльшую часть Периодической таблицы. Основные свойства металлов: твердые (кроме ртути); блестят; хорошие электро- и теплопроводники; пластичные; ковкие; легко отдают электроны.

Элементы, расположенные справа от ступенчатой диагонали B-Po, называются неметаллами . Свойства неметаллов прямо противоположны свойствам металлов: плохие проводники тепла и электричества; хрупкие; нековкие; непластичные; обычно принимают электроны.

Металлоиды

Между металлами и неметаллами находятся полуметаллы (металлоиды). Для них характерны свойства как металлов, так и неметаллов. Основное применение в промышленности полуметаллы нашли в производстве полупроводников, без которых немыслима ни одна современная микросхема или микропроцессор.

Периоды и группы

Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.

Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s 2 2s 2 2p 6 3s 1 ; Mg отдает два электрона: 1s 2 2s 2 2p 6 3s 2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s 2 2s 2 2p 6 3s 2 3p 5 .

В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.

Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.

Группа IA(1) . Атомы элементов этой группы имеют во внешнем электронном слое всего по одному электрону, поэтому легко отдают один электрон.

Наиболее важные щелочные металлы - натрий (Na) и калий (K), поскольку играют важную роль в процессе жизнедеятельности человека и входят в состав солей.

Электронные конфигурации:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Группа IIA(2) . Атомы элементов этой группы имеют во внешнем электронном слое по два электрона, которые также отдают во время химических реакций. Наиболее важный элемент - кальций (Ca) - основа костей и зубов.

Электронные конфигурации:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Группа VIIA(17) . Атомы элементов этой группы обычно получают по одному электрону, т.к. на внешнем электронном слое находится по пять элементов и до "полного комплекта" как раз не хватает одного электрона.

Наиболее известные элементы этой группы: хлор (Cl) - входит в состав соли и хлорной извести; йод (I) - элемент, играющий важную роль в деятельности щитовидной железы человека.

Электронная конфигурация:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Группа VIII(18). Атомы элементов этой группы имеют полностью "укомплектованный" внешний электронный слой. Поэтому им "не надо" принимать электроны. И отдавать их они "не хотят". Отсюда - элементы этой группы очень "неохотно" вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название "инертный", т.е. "бездействующий"). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.

Электронные конфигурации:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов - по 1 валентному электрону:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

У щелочноземельных металлов - по 2 валентных электрона:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

У галогенов - по 7 валентных электронов:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

У инертных газов - по 8 валентных электронов:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам .

Обратим теперь свое внимание на элементы, расположенные в группах с символов В . Они расположены в центре периодической таблицы и называются переходными металлами .

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали :

  1. Sc - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Отдельно от основной таблицы расположены лантаноиды и актиноиды - это, так называемые, внутренние переходные металлы . В атомах этих элементов электроны заполняют f-орбитали :

  1. Ce - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2

2.1. Химический язык и его части

Человечество использует много разных языков. Кроме естественных языков (японского, английского, русского – всего более 2,5 тысяч), существуют еще и искусственные языки , например, эсперанто. Среди искусственных языков выделяются языки различных наук . Так, в химии используется свой, химический язык .
Химический язык – система условных обозначений и понятий, предназначенная для краткой, ёмкой и наглядной записи и передачи химической информации.
Сообщение, написанное на большинстве естественных языков, делится на предложения, предложения – на слова, а слова – на буквы. Если предложения, слова и буквы мы назовем частями языка, то тогда мы сможем выделить аналогичные части и в химическом языке (таблица 2).

Таблица 2. Части химического языка

Любым языком овладеть сразу невозможно, это относится и к химическому языку. Поэтому пока вы познакомитесь только с основами этого языка: выучите некоторые " буквы" , научитесь понимать смысл " слов" и" предложений" . В конце этой главы вы познакомитесь с названиями химических веществ – неотъемлемой частью химического языка. По мере изучения химии ваше знание химического языка будет расширяться и углубляться.

ХИМИЧЕСКИЙ ЯЗЫК.
1.Какие искусственные языки вы знаете (кроме названных в тексте учебника)?
2.Чем естественные языки отличаются от искусственных?
3.Как вы думаете, можно ли при описании химических явлений обходиться без использования химического языка? Если нет, то почему? Если да, то в чем будут заключаться преимущества, а в чем недостатки такого описания?

2.2. Символы химических элементов

Символ химического элемента обозначает сам элемент или один атом этого элемента.
Каждый такой символ представляет собой сокращенное латинское название химического элемента, состоящее из одной или двух букв латинского алфавита (латинский алфавит см. в приложении 1). Символ пишется с прописной буквы. Символы, а также русские и латинские названия некоторых элементов, приведены в таблице 3. Там же даны сведения о происхождении латинских названий. Общего правила произношения символов не существует, поэтому в таблице 3 приводится и " чтение" символа, то есть, как этот символ читается в химической формуле.

Заменять символом название элемента в устной речи нельзя, а в рукописных или печатных текстах это допускается, но не рекомендуется.В настоящее время известно 110 химических элементов, у 109 из них есть названия и символы, утвержденные Международным союзом теоретической и прикладной химии (ИЮПАК).
В таблице 3 приведена информация только о 33 элементах. Это те элементы, которые при изучении химии вам встретятся в первую очередь. Русские названия (в алфавитном порядке) и символы всех элементов приведены в приложении 2.

Таблица 3. Названия и символы некоторых химических элементов

Название

Латинское

Написание

-

Написание

Происхождение

- -
Азот N itrogenium От греч. " рождающий селитру" " эн"
Алюминий Al uminium От лат. " квасцы" " алюминий"
Аргон Ar gon От греч. " недеятельный" " аргон"
Барий Ba rium От греч. " тяжелый" " барий"
Бор B orum От арабск. " белый минерал" " бор"
Бром Br omum От греч. " зловонный" " бром"
Водород H ydrogenium От греч. " рождающий воду" " аш"
Гелий He lium От греч. " Солнце" " гелий"
Железо Fe rrum От лат. " меч" " феррум"
Золото Au rum От лат. " горящий" " аурум"
Йод I odum От греч. " фиолетовый" " йод"
Калий K alium От арабск. " щёлочь" " калий"
Кальций Ca lcium От лат. " известняк" " кальций"
Кислород O xygenium От греч. " рождающий кислоты" " о"
Кремний Si licium От лат. " кремень" " силициум"
Криптон Kr ypton От греч. " скрытый" " криптон"
Магний M ag nesium От назв. полуострова Магнезия " магний"
Марганец M an ganum От греч. " очищающий" " марганец"
Медь Cu prum От греч. назв. о. Кипр " купрум"
Натрий Na trium От арабск, " моющее средство" " натрий"
Неон Ne on От греч. " новый" " неон"
Никель Ni ccolum От нем. " медь святого Николая" " никель"
Ртуть H ydrarg yrum Лат. " жидкое серебро" " гидраргирум"
Свинец P lumb um От лат. названия сплава свинца с оловом. " плюмбум"
Сера S ulfur От санскриттского " горючий порошок" " эс"
Серебро A rg entum От греч. " светлый" " аргентум"
Углерод C arboneum От лат. " уголь" " цэ"
Фосфор P hosphorus От греч. " несущий свет" " пэ"
Фтор F luorum От лат. глагола " течь" " фтор"
Хлор Cl orum От греч. " зеленоватый" " хлор"
Хром C hr omium От греч. " краска" " хром"
Цезий C aes ium От лат. " небесно-голубой" " цезий"
Цинк Z in cum От нем. " олово" " цинк"

2.3. Химические формулы

Для обозначения химических веществ используют химические формулы .

Для молекулярных веществ химическая формула может обозначать и одну молекулу этого вещества.
Информация о веществе может быть разной, поэтому существуют разные типы химических формул .
В зависимости от полноты информации химические формулы делятся на четыре основных типа: простейшие , молекулярные , структурные и пространственные .

Подстрочные индексы в простейшейформуле не имеют общего делителя.
Индекс " 1" в формулах не ставится.
Примеры простейших формул: вода – Н 2 О, кислород – О, сера – S, оксид фосфора – P 2 O 5 , бутан – C 2 H 5 , фосфорная кислота – H 3 PO 4 , хлорид натрия (поваренная соль) – NaCl.
Простейшая формула воды (Н 2 О) показывает, что в состав воды входит элемент водород (Н) и элемент кислород (О), причем в любой порции (порция – часть чего-либо, что может быть разделено без утраты своих свойств.) воды число атомов водорода в два раза больше числа атомов кислорода.
Число частиц , в том числе и число атомов , обозначается латинской буквой N . Обозначив число атомов водорода – N H , а число атомов кислорода – N O , мы можем записать, что

Или N H: N O = 2: 1.

Простейшая формула фосфорной кислоты (Н 3 РО 4) показывает, что в состав фосфорной кислоты входят атомы водорода , атомы фосфора и атомы кислорода , причем отношение чисел атомов этих элементов в любой порции фосфорной кислоты равно 3:1:4, то есть

N H: N P: N O = 3: 1: 4.

Простейшая формула может быть составлена для любого индивидуального химического вещества, а для молекулярного вещества, кроме того, может быть составлена молекулярная формула .

Примеры молекулярных формул: вода – H 2 O, кислород – O 2 , сера – S 8 , оксид фосфора – P 4 O 10 , бутан – C 4 H 10 , фосфорная кислота – H 3 PO 4 .

У немолекулярных веществ молекулярных формул нет.

Последовательность записи символов элементов в простейших и молекулярных формулах определяется правилами химического языка, с которыми вы познакомитесь по мере изучения химии. На информацию, передаваемую этими формулами, последовательность символов влияния не оказывает.

Из знаков, отражающих строение веществ, мы будем использовать пока только валентный штрих (" черточку"). Этот знак показывает наличие между атомами так называемой ковалентной связи (что это за тип связи и каковы его особенности, вы скоро узнаете).

В молекуле воды атом кислорода связан простыми (одинарными) связями с двумя атомами водорода, а атомы водорода между собой не связаны. Именно это наглядно показывает структурная формула воды.

Другой пример: молекула серы S 8 . В этой молекуле 8 атомов серы образуют восьмичленный цикл, в котором каждый атом серы связан с двумя другими атомами простыми связями. Сравните структурную формулу серы с объемной моделью ее молекулы, показанной на рис. 3. Обратите внимание на то, что структурная формула серы не передает форму ее молекулы, а показывает только последовательность соединения атомов ковалентными связями.

Структурная формула фосфорной кислоты показывает, что в молекуле этого вещества один из четырех атомов кислорода связан только с атомом фосфора двойной связью, а атом фосфора, в свою очередь, связан еще с тремя атомами кислорода простыми связями. Каждый из этих трех атомов кислорода, кроме того, связан простой связью с одним из трех имеющихся в молекуле атомов водорода./p>

Сравните приведенную ниже объемную модель молекулы метана с его пространственной, структурной и молекулярной формулой:

В пространственной формуле метана клиновидныевалентные штрихи как бы в перспективе показывают, какой из атомов водорода находится " ближе к нам" , а какой " дальше от нас" .

Иногда в пространственной формуле указывают длины связей и значения углов между связями в молекуле, как это показано на примере молекулы воды.

Немолекулярные вещества не содержат молекул. Для удобства проведения химических расчетов в немолекулярном веществе выделяют так называемую формульную единицу .

Примеры состава формульных единиц некоторых веществ: 1) диоксид кремния (кварцевый песок, кварц) SiO 2 – формульная единица состоит из одного атома кремния и двух атомов кислорода; 2) хлорид натрия (поваренная соль) NaCl – формульная единица состоит из одного атома натрия и одного атома хлора; 3) железо Fe – формульная единица состоит из одного атома железа.Как и молекула, формульная единица – наименьшая порция вещества, сохраняющая его химические свойства.

Таблица 4

Информация, передаваемая формулами разных типов

Тип формулы

Информация, передаваемая формулой.

Простейшая

Молекулярная

Структурная

Пространственная

  • Атомы каких элементов входят в состав вещества.
  • Соотношения между числами атомов этих элементов.
  • Число атомов каждого из элементов в молекуле.
  • Типы химических связей.
  • Последовательность соединения атомов ковалентными связями.
  • Кратность ковалентных связей.
  • Взаимное расположение атомов в пространстве.
  • Длины связей и углы между связями (если указаны).

Рассмотрим теперь на примерах, какую информацию дают нам формулы разных типов.

1. Вещество: уксусная кислота . Простейшая формула – СН 2 О, молекулярная формула – C 2 H 4 O 2 , структурная формула

Простейшая формула говорит нам, что
1) в состав уксусной кислоты входит углерод, водород и кислород;
2) в этом веществе число атомов углерода относится к числу атомов водорода и к числу атомов кислорода, как 1:2:1, то есть N H: N C:N O = 1:2:1.
Молекулярная формула добавляет, что
3) в молекуле уксусной кислоты – 2 атома углерода, 4 атома водорода и 2 атома кислорода.
Структурная формула добавляет, что
4, 5) в молекуле два атома углерода связаны между собой простой связью; один из них, кроме этого, связан с тремя атомами водорода, с каждым простой связью, а другой – с двумя атомами кислорода, с одним – двойной связью, а с другим – простой; последний атом кислорода связан еще простой связью с четвертым атомом водорода.

2. Вещество: хлорид натрия . Простейшая формула – NaCl.
1) В состав хлорида натрия входит натрий и хлор.
2) В этом веществе число атомов натрия равно числу атомов хлора.

3. Вещество: железо . Простейшая формула – Fe.
1) В состав этого вещества входит только железо, то есть это простое вещество.

4. Вещество: триметафосфорная кислота . Простейшая формула – HPO 3 , молекулярная формула – H 3 P 3 O 9 , структурная формула

1) В состав триметафосфорной кислоты входит водород, фосфор и кислород.
2) N H: N P:N O = 1:1:3.
3) Молекула состоит из трех атомов водорода, трех атомов фосфора и девяти атомов кислорода.
4, 5) Три атома фосфора и три атома кислорода, чередуясь, образуют шестичленный цикл. Все связи в цикле простые. Каждый атом фосфора, кроме того, связан еще с двумя атомами кислорода, причем с одним – двойной связью, а с другим – простой. Каждый из трех атомов кислорода, связанных простыми связямис атомами фосфора, связан еще простой связью с атомом водорода.

Фосфорная кислота – H 3 PO 4 (другое название – ортофосфорная кислота) – прозрачное бесцветное кристаллическое вещество молекулярного строения, плавящееся при 42 o С. Это вещество очень хорошо растворяется в воде и даже поглощает пары воды из воздуха (гигроскопично). Фосфорную кислоту производят в больших количествах и используют прежде всего в производстве фосфорных удобрений, а также в химической промышленности, при производстве спичек и даже в строительстве. Кроме того, фосфорная кислота применяется при изготовлении цемента в зубоврачебной технике, входит в состав многих лекарственных средств. Эта кислота достаточно дешева, поэтому в некоторых странах, например в США, очень чистая сильно разбавленная водой фосфорная кислота добавляется в освежающие напитки для замены дорогой лимонной кислоты.
Метан – CH 4 . Если у вас дома есть газовая плита, то с этим веществом вы сталкиваетесь ежедневно: природный газ, который горит в конфорках вашей плиты, на 95 % состоит из метана. Метан – газ без цвета и запаха с температурой кипения –161 o С. В смеси с воздухом он взрывоопасен, этим и объясняются происходящие иногда в угольных шахтах взрывы и пожары (другое название метана – рудничный газ). Третье название метана – болотный газ – связано с тем, что пузырьки именно этого газа поднимаются со дна болот, где он образуется в результате деятельности некоторых бактерий. В промышленности метан используется как топливо и сырье для производства других веществ.Метан является простейшим углеводородом . К этому классу веществ относятся также этан (C 2 H 6), пропан (C 3 H 8), этилен (C 2 H 4), ацетилен (C 2 H 2) и многие другие вещества.

Таблица 5 . Примеры формул разных типов для некоторых веществ -

Как пользоваться таблицей Менделеева? Для непосвященного человека читать таблицу Менделеева – всё равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева может рассказать о мире очень многое.

Помимо того, что сослужит вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.

Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов.

Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.


Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств.

Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.


В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически.

Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Современный вид таблицы Менделеева

Ниже приведем саму таблицу

Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)

Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.

  1. Металлические свойства элементов при движении вдоль периода слева направо уменьшаются, а в обратном направлении – увеличиваются.
  2. Размеры атомов при перемещении слева направо вдоль периодов уменьшаются.
  3. При движении сверху вниз по группе увеличиваются восстановительные металлические свойства.
  4. Окислительные и неметаллические свойства при движении вдоль периода слева направо увеличиваются.

Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.

Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).

Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.

Вот и закончился наш курс "Таблица Менделеева для чайников". В завершение, предлагаем вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о , который с радостью поделится с вами своими знаниями и опытом.

Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.

Любой, кто ходил в школу, помнит, что одним из обязательных для изучения предметов была химия. Она могла нравиться, а могла и не нравиться – это не важно. И вполне вероятно, что многие знания по этой дисциплине уже забыты и в жизни не применяются. Однако таблицу химических элементов Д. И. Менделеева наверняка помнит каждый. Для многих она так и осталась разноцветной таблицей, где в каждый квадратик вписаны определённые буквы, обозначающие названия химических элементов. Но здесь мы не будем говорить о химии как таковой, и описывать сотни химических реакций и процессов, а расскажем о том, как вообще появилась таблица Менделеева – эта история будет интересна любому человеку, да и вообще всем тем, кто охоч до интересной и полезной информации.

Небольшая предыстория

В далёком 1668 году выдающимся ирландским химиком, физиком и богословом Робертом Бойлем была опубликована книга, в которой было развенчано немало мифов об алхимии, и в которой он рассуждал о необходимости поиска неразложимых химических элементов. Учёный также привёл их список, состоящий всего из 15 элементов, но допускал мысль о том, что могут быть ещё элементы. Это стало отправной точкой не только в поиске новых элементов, но и в их систематизации.

Сто лет спустя французским химиком Антуаном Лавуазье был составлен новый перечень, в который входили уже 35 элементов. 23 из них позже были признаны неразложимыми. Но поиск новых элементов продолжался учёными по всему миру. И главную роль в этом процессе сыграл знаменитый русский химик Дмитрий Иванович Менделеев – он впервые выдвинул гипотезу о том, что между атомной массой элементов и их расположением в системе может быть взаимосвязь.

Благодаря кропотливому труду и сопоставлению химических элементов Менделеев смог обнаружить связь между элементами, в которой они могут быть одним целым, а их свойства являются не чем-то само собой разумеющимся, а представляют собой периодически повторяющееся явление. В итоге, в феврале 1869 года Менделеев сформулировал первый периодический закон, а уже в марте его доклад «Соотношение свойств с атомным весом элементов» был представлен на рассмотрение Русского химического общества историком химии Н. А. Меншуткиным. Затем в том же году публикация Менделеева была напечатана в журнале «Zeitschrift fur Chemie» в Германии, а в 1871 году новую обширную публикацию учёного, посвящённую его открытию, опубликовал другой немецкий журнал «Annalen der Chemie».

Создание периодической таблицы

Основная идея к 1869 году уже была сформирована Менделеевым, причём за довольно короткое время, но оформить её в какую-либо упорядоченную систему, наглядно отображающую, что к чему, он долго не мог. В одном из разговоров со своим соратником А. А. Иностранцевым он даже сказал, что в голове у него уже всё сложилось, но вот привести всё к таблице он не может. После этого, согласно данным биографов Менделеева, он приступил к кропотливой работе над своей таблицей, которая продолжалась трое суток без перерывов на сон. Перебирались всевозможные способы организации элементов в таблицу, а работа была осложнена ещё и тем, что в тот период наука знала ещё не обо всех химических элементах. Но, несмотря на это, таблица всё же была создана, а элементы систематизированы.

Легенда о сне Менделеева

Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.

Дальнейшая работа

В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.

Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Уроки творческого процесса

Говоря о том, какие уроки творческого процесса можно извлечь из всей истории создания периодической таблицы Д. И. Менделеева, можно привести в пример идеи английского исследователя в области творческого мышления Грэма Уоллеса и французского учёного Анри Пуанкаре. Приведём их вкратце.

Согласно исследованиям Пуанкаре (1908 год) и Грэма Уоллеса (1926 год), существует четыре основных стадии творческого мышления:

  • Подготовка – этап формулирования основной задачи и первые попытки её решения;
  • Инкубация – этап, во время которого происходит временное отвлечение от процесса, но работа над поиском решения задачи ведётся на подсознательном уровне;
  • Озарение – этап, на котором находится интуитивное решение. Причём, найтись это решение может в абсолютно не имеющей к задаче ситуации;
  • Проверка – этап испытаний и реализации решения, на котором происходит проверка этого решения и его возможное дальнейшее развитие.

Как мы видим, в процессе создания своей таблицы Менделеев интуитивно следовал именно этим четырём этапам. Насколько это эффективно, можно судить по результатам, т.е. по тому, что таблица была создана. А учитывая, что её создание стало огромным шагом вперёд не только для химической науки, но и для всего человечества, приведённые выше четыре этапа могут быть применимы как к реализации небольших проектов, так и к осуществлению глобальных замыслов. Главное помнить, что ни одно открытие, ни одно решение задачи не могут быть найдены сами по себе, как бы ни хотели мы увидеть их во сне и сколько бы ни спали. Чтобы что-то получилось, не важно, создание это таблицы химических элементов или разработка нового маркетинг-плана, нужно обладать определёнными знаниями и навыками, а также умело использовать свои потенциал и упорно работать.

Мы желаем вам успехов в ваших начинаниях и успешной реализации задуманного!

Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.

Шаги

Часть 1

Структура таблицы

    Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы (в нижнем правом углу). Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

  1. Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми.

    • Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.
  2. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.

    • Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
    • В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими (например, IA) или арабскими (например,1A или 1) цифрами.
    • При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
  3. Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам (элементы одной группы обладают схожими физическими и химическими свойствами). Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

    • Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
    • Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
  4. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

    • Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
    • Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
    • При движении вдоль строки слева направо говорят, что вы «просматриваете период».
  5. Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

    Часть 2

    Обозначения элементов
    1. Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

      • Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
    2. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом.

      • Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
    3. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

      • Атомный номер всегда является целым числом.
    4. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

      • По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме.
    5. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован. Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется.

      • Ионы имеют электрический заряд. Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус».
      • Знаки «плюс» и «минус» не ставятся, если атом не является ионом.

Close