Лекция №2

по математике

Тема: «Математические понятия»

    Математические понятия

    Определение понятий

    Требования к определению понятий

    Некоторые виды определений

1. Математические понятия

Понятия, которые изучаются в начальном курсе математику, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др. Третью составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Как же изучить такое обилие самых разных понятий?

Прежде всего, надо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли, отражающую объекты (предметы или явления) в их существенных и общих свойствах. Языковой формой понятия является слово или группа слов.

Составить понятие об объекте - это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие их свойства: цвет, массу, твердость и т.д. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функций, т.е. абстракцией от абстракций.

Чтобы овладеть общими подходами к изучению понятий в начальном курсе математики, учителю необходимы знания об объеме и содержании понятия, об отношениях между понятиями и о видах определений понятий.

2. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата ABCD свойство «сторона AD горизонтальна». Если квадрат повернуть, то сторона AD окажется расположенной по-другому (рис. 26).

Поэтому, чтобы понимать, что представляет собой данный математический объект, надо знать его существенные свойства.

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».

Вообще объем понятия - это множество всех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Рассмотрим, например, понятие «прямоугольник».

Объем понятия - это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, с,..., z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

Если А В (А ≠ В), то говорят, что понятиеа - видовое по отношению к понятию b , а понятие b - родовое по отношению к понятию а .

Например, если а - «прямоугольник», b - «четырехугольник», то их объемы А и В находятся в отношении включения (А В и А ≠ В), поскольку всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

Если А = В, то говорят, что понятия а и b тождественны.

Например, тождественны понятия «равносторонний треугольник» и «равноугольный треугольник», так как их объемы совпадают.

Если множества А и В не связаны отношением включения, то говорят, что понятия а и b не находятся в отношении рода и вида и не тождественны. Например, не связаны такими отношениями понятия «треугольник» и «прямоугольник».

Рассмотрим подробнее отношение рода и вида между понятиями. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.

Так как объем понятия - множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, например, отношения между следующими парами понятий а и Ь, если:

1) а - «прямоугольник», b - «ромб»;

2) а - «многоугольник», b - «параллелограмм»;

3) а - «прямая», b - «отрезок».

В случае 1) объемы понятий пересекаются, но не одно множество не является подмножеством другого (рис. 27).

Следовательно, можно утверждать, что данные понятия а и b не находятся в отношении рода и вида.

В случае 2) объемы данных понятии находятся в отношении включения, но не совпадают - всякий параллелограмм является многоугольником, но не наоборот (рис. 28). Следовательно, можно утверждать, что понятие «параллелограмм» - видовое по отношению к понятию «многоугольник», а понятие «многоугольник» - родовое по отношению к понятию «параллелограмм».

В случае 3) объемы понятий не пересекаются, так как ни про один отрезок нельзя сказать, что он является прямой, и ни одна прямая не может быть названа отрезком (рис. 29).

Следовательно, данные понятия не находятся в отношении рода и вида.

О понятиях «прямая» и «отрезок» можно сказать, что они находятся в отношении целого и части: отрезок- часть прямой, а не ее вид. И если видовое понятие обладает всеми свойствами родового понятия, то часть не обязательно обладает всеми свойствами целого. Например, отрезок не обладает таким свойством прямой, как ее бесконечность.

Формирование элементарных математических понятий младшего школьника

Е.Ю. Тогобецкая, магистрант кафедры педагогики и методик преподавания

Тольяттинский педагогический университет, Тольятти (Россия)

Ключевые слова: математические понятия, абсолютные понятия, относительные понятия, определения.

Аннотация: В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на малосущественные признаки, существенные же признаки понятий ученики осознают и воспроизводят только при ответе на вопросы, требующие определения понятия. Часто учащиеся безошибочно воспроизводят понятия, то есть обнаруживают знание его существенных признаков, но применить эти знания на практике не могут, опираются на те случайные признаки, выделенные благодаря непосредственному опыту. Процессом усвоения понятий можно управлять, формировать их с заданными качествами.

Keywords: mathematical concepts, absolute concepts, relative concepts, definitions.

Annotation: In school practice many teachers achieve from pupils of learning of definitions of concepts and the knowledge of their basic proved properties demands. However results of such training are usually insignificant. It occurs because the majority of pupils, applying the concepts acquired at school, pupils lean against the unimportant signs, essential signs of concepts realise and reproduce only at the answer to the questions demanding definition of concept. Often pupils unmistakably reproduce concepts, that is find out knowledge of its essential signs, but put this knowledge into practice cannot, lean against those casual signs allocated thanks to a first-hand experience. Process of mastering of concepts it is possible to operate, form them with the set qualities.

При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.

Логика в понятиях различает объем и содержание. Под объемом понимается тот класс объектов, которые относятся к этому понятию, объединяются им. Так, в объем понятия треугольник входит все множество треугольников независимо от их конкретных характеристик (видов углов, размера сторон и др.).

Под содержанием понятий понимается та система существенных свойств, по которой происходит объединение данных объектов в единый класс. Чтобы раскрыть содержание понятие, следует путем сравнения установить, какие признаки необходимы и достаточны для выделения его отношения к другим предметам. До тех пор, пока не установлены содержание и признаки, не ясна сущность предмета, отражаемого этим понятием, невозможно точно и четко отграничить этот предмет от смежных с ним, происходит путаница мышления.

Например, понятии треугольник к таким свойствам относятся следующие: замкнутая фигура, состоит из трех отрезков прямой. Совокупность свойств, по которым объединяются объекты в единый класс, называются необходимыми и достаточными признаками. В одних понятиях эти признаки дополняют друг друга, образуя вместе то содержание, по которому и объединяются объекты в единый класс. Примером таких понятий могут служить треугольник, угол, биссектриса и многие другие.

Совокупность данных объектов, на которые распространяется данное понятие, составляет логический класс объектов. Логический класс объектов - это совокупность объектов, имеющие общие признаки, вследствие чего они выражаются общим понятием. Логический класс объектов и объем соответствующего понятия совпадают.Понятия делятся на виды по содержанию и объему в зависимости от характера и количества объектов, на которые они распространяются. По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.

Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см». Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента. Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы». По содержанию различают понятия конъюнктивные и дизъюнктивные, абсолютные и конкретные, безотносительные и относительные.

Понятия называются конъюнктивными, если их признаки взаимосвязаны и по отдельности ни один из них не позволяет опознать объекты этого класса, признаки связаны союзом «и». Например, объекты, относящиеся к понятию треугольник, обязательно должны состоять из трех отрезков прямой и быть замкнутыми.

В других понятиях отношение между необходимыми и достаточными признаками другие: они не дополняют друг друга, а заменяют. Это означает, что один признак является эквивалентом другого. Примером такого вида отношений между признаками могут служить признаки равенства отрезков, углов. Известно, что к классу равных отрезков относятся такие отрезки, которые: а) или совпадают при наложении; б) или порознь равны третьему; в) или состоят из равновеликих частей и т.д.

В данном случае перечисленные признаки не требуются все одновременно, как это имеет место при конъюнктивном типе понятий; здесь достаточно какого-то одного признака из всех перечисленных: каждый из них эквивалентен любому из остальных. В силу этого признаки связаны союзом «или». Такая связь признаков называется дизъюнкцией, а понятия соответственно называются дизъюнктивными. Важно также учитывать деление понятий на абсолютные и относительные.

Абсолютные понятия объединяют предметы в классы по определенным признакам, характеризующим суть этих предметов как таковых. Так, в понятии угол отражены свойства, характеризующие сущность любого угла как такового. Аналогично положение со многими другими геометрическими понятиями: окружность, луч, ромб и т.д.

Относительные понятия объединяют объекты в классы по свойствам, характеризующим их отношение к другим объектам. Так, в понятии перпендикулярные прямые фиксируется то, что характеризует отношение двух прямых друг к другу: пересечение, образование при этом прямого угла. Аналогично в понятии число отражено отношение измеряемой величины и принятого эталона. Относительные понятия вызывают у учащихся более серьезные трудности, чем понятия абсолютные. Суть трудностей состоит именно в том, что школь-ники не учитывают относительность понятий и оперируют с ними как с понятиями абсолютными. Так, когда учитель просит учеников изобразить перпендикуляр, то некоторые из них изображают вертикаль. Особое внимание следует уделить понятию число.

Число - это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три - при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления. Трудности в усвоении относительных понятий сохраняются у учащихся и в средних, и даже в старших классах школы. Между содержанием и объемом понятия существует зависимость: чем меньший объем понятия, тем больше его содержание.

Например, понятие «квадрат» имеет меньший объем, чем объем понятия «прямоугольник» так как любой квадрат - это прямоугольник, но не всякий прямоугольник есть квадрат. Поэтому понятие «квадрат» имеет большее содержание, чем понятие «прямоугольник»: квадрат имеет все свойства прямоугольника и некоторые другие (у квадрата все стороны равны, диагонали взаимно перпендикулярны).

В процессе мышления каждое понятие не существует в отдельности, а вступает в определенные связи и отношения с другими понятиями. В математике важной формой связи есть родовидовая зависимость.

Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе - родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.

Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» - «четырехугольник», для «четырехугольника» - «многоугольник», а для «многоугольника»- «плоская фигура».

В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа. Такая методика работы над математическими понятиями в начальной школе не означает, что в этом курсе не используются различные виды определений.

Определить понятие - это перечислить все существенные признаки объектов, которые входят в данное понятие. Словесное определение понятия называется термином. Например, «число», «треугольник», «круг», «уравнение» - термины.

Определение решает две задачи: выделяет и отмежевывает какое-то определенное понятие от всех других и указывает те главные признаки, без которых не может существовать понятие и от которых зависят все остальные признаки.

Определение может быть более или менее глубоким. Это зависит от уровня знаний о понятии, которое означается. Чем лучшее мы его знаем, тем большая вероятность, что мы сможем дать для него лучшее определение. В практике обучения младших школьников применяются явные и неявные определения. Явные определения имеют форму равенства или совпадения двух понятий.

Например: «Пропедевтика есть вступление в любую науку». Здесь приравнивают один к одному два понятия - «пропедевтика» и «вступление в любую науку». В определении «Квадрат - это прямоугольник, у которого все стороны равны» имеем совпадение понятий. В обучении младших школьников особый интерес среди неявных определений составляют контекстуальные и остенсивные определения.

Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует, есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.

Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а - 3) 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий. Почти все определения, с которыми мы встречаемся в повседневной жизни - это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного. Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой -- маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.

Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.

Остенсивные определния - это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием. Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите - это квадрат». Это типичное остенсивное определение.

В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый - правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.

На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения - и только они - связывают слово с вещами. Без них язык - лишь словесное кружево, которое не имеет объективного, предметного содержания. Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение». В математике используются разные явные определения. Наиболее распространенное из них - определение через ближайший род и видовой признак. Родовидовое определение еще называют классическим.

Примеры определений через род и видовой признак: «Параллелограмм - это четырехугольник, у которого противоположные стороны параллельные», «Ромбом называется параллелограмм, стороны которого равны», «Прямоугольником называется параллелограмм, у которого углы прямые», «Квадратом называется прямоугольник, в которым стороны равны», « Квадратом называется ромб, у которого прямые углы».

Рассмотрим определения квадрата. В первом определении ближайшим родом будет «прямоугольник», а видовым признаком - «все стороны равны». В втором определении ближайший род «ромб», а видовой признак - «прямые углы». Если же взять не ближайший род («параллелограмм»), то видовых признаков квадрата будет два «Квадратом называется параллелограмм, у которого все стороны равны и все углы прямые».

В родовидовом отношении находятся понятия «сложение (вычитание, умножение, деление)» и «арифметическое действие», понятие «острый (прямой, тупой) угол» и «угол». Примеров явных родовидовых отношений среди множества математических понятий, которые рассматриваются в начальных классах, не так уже и много. Но с учетом важности определения через род и видовой признак в дальнейшем обучении желательно добиваться понимания учениками сущности определения этого вида уже в начальных классах.

Отдельные определения могут рассматривать понятие и по способу его образования или возникновения. Определение такого типа называют генетическими. Примеры генетических определений: «Угол - это лучи, которые выходят с одной точки», «Диагональ прямоугольника - отрезок, который соединяет противоположные вершины прямоугольника». В начальных классах генетические определения применяют для таких понятий, как «отрезок», «ломаная», «прямой угол», «круг». К генетическим понятиям можно отнести и определение через перечень.

Например, «Натуральный ряд чисел -- это числа 1, 2, 3, 4 и т.д.». Некоторые понятия в начальных классах вводят только через термин. Например, единицы времени год, месяц, час, минута. Есть в начальных классах понятия, которые подаются символическим языком в виде равенства, например, а 1= а, а 0=0

Из выше сказанного можно сделать вывод, что в начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий - одна из условий формирования у учеников твердых знаний об этих понятиях.

Список литературы:

1. Богданович М.В. Определение математических понятий //Начальная школа 2001. - № 4 .

2. Глузман Н. А. Формирование обобщенных приемов умственной деятельности у младших школьников. - Ялта: КГГИ, 2001. - 34 с.

3. Дрозд В.Л. Урбан М.А. От маленьких проблем - к большим открытиям. //Начальная школа. - 2000. - № 5.



Министерство образования Республики Беларусь

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра МПМ

Реферат

Математические понятия

Исполнитель:

Студентка группы М- 32

Молодцова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент

Лебедева М.Т.

Гомель 2007

Введение

Формулировки многих определений (теорем, аксиом) учащимся понятны, легко запоминаются после небольшого числа повторений, поэтому целесообразно в начале предложить их запомнить, а затем научить применять к решению задач.

раздельным.

1. Объём и содержание понятия. Классификация понятий

Объекты реальной действительности обладают: а) едиными свойствами, выражающими его отличительные свойства (например, уравнение третьей степени с одной переменной - кубическое уравнение); б) общими свойствами, которые могут быть отличительными, если выражают существенные свойства объекта (его признаки), выделяющие его из множества других объектов.

Термин “понятие” используется для обозначения мысленного образа некоторого класса объектов, процессов. Психологи выделяют три формы мышления:

1) понятиями (например, медиана - отрезок, соединяющий вершину с противоположной стороной треугольника);

2) суждениями (например, для углов произвольного треугольника справедливо:);

3) умозаключениями (например, если a>b и b>c, то a>c).

Характерными для формы мышления понятиями являются: а) это продукт высокоорганизованной материи; б) отражает материальный мир; в) предстаёт в познании как средство обобщения; г) означает специфически человеческую деятельность; д) его формирование в сознании неотделимо от его выражения посредством речи, записи или символа.

Математическое понятие отражает в нашем мышлении определённые формы и отношения действительности, абстрагированные от реальных ситуаций. Их формирование происходит по схеме:

Каждое понятие объединяет множество объектов или отношений, называемое объёмом понятия , а характеристические свойства, присущие всем элементам этого множества и только им, выражающие содержание понятия.

Например, математическое понятие - четырёхугольник. Его объём : квадрат, прямоугольник, параллелограмм, ромб, трапеция и т.д. Содержание: 4 стороны, 4 угла, 4 вершины (характеристические свойства).

Содержание понятия жёстко определяет его объём и, наоборот, объём понятия вполне определяет его содержание. Переход от чувственной ступени к логической происходит посредством обобщения: либо через выделение общих признаков объекта (параллелограмм - четырёхугольник - многоугольник); либо через общие признаки в сочетании с особенными или единичными, которое приводит к конкретному понятию.

В процессе обобщения объём расширяется, а содержание сужается. В процессе специализации понятия объём сужается, я содержание расширяется.

Например:

многоугольники - параллелограммы;

треугольники - равносторонние треугольники.

Если объём одного понятия содержится в объёме другого понятия, то второе понятие называется родовым , по отношению к первому; а первое называется видовым по отношению ко второму. Например: параллелограмм - ромб (род) (вид).

Процесс выяснения объёма понятия называется классификацией , схема которой выглядит так:

пусть дано множество и некоторое свойство и пусть в есть элементы, как обладающие, так и не обладающие этим свойством. Пусть:

Выделим в новое свойство и проведём разбиение по этому свойству:

Например: 1) классификация числовых множеств, отражающих развитие понятия числа; 2) классификация треугольников: а) по сторонам; б) по углам.

Задача №1. Множество треугольников изобразим с помощью точек квадрата.

Свойство равнобедренности;

Свойство прямоугольности;

Существуют ли треугольники, обладающие этими свойствами одновременно?

2. Математические определения. Типы ошибок в определении понятий

Заключительный этап формирования понятия - его определение , т.е. принятие условного соглашения. Под определением понимается перечисление необходимых и достаточных признаков понятия, сведённых в связное предложение (речевое или символическое).

2.1 Способы определения понятий

Первоначально выделяют неопределяемые понятия, на основании которых определяются математические понятия следующими способами:

1) через ближайший род и видовое отличие : а) дескриптивное (выясняющее процесс, при помощи которого определение построено, или описывающее внутреннее строение в зависимости от тех операций, при помощи которых данное определение было построено из неопределяемых понятий); б) конструктивное (или генетическое ), указывающее происхождение понятия.

Например: а) прямоугольник - это параллелограмм, у которого все углы прямые; б) окружностью называется фигура, которая состоит из всех точек плоскости, равноудалённых от данной точки. Эта точка называется центром окружности.

2) индуктивно. Например, определение арифметической прогрессии:

3) через абстракцию . Например, натуральное число - характеристика классов эквивалентных конечных множеств;

4) аксиоматическое (косвенное определение) . Например, определение площади фигуры в геометрии: для простых фигур площадь - это положительная величина, численное значение которой обладает следующими свойствами: а) равные фигуры имеют равные площади; б) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей; в) площадь квадрата со стороной, равной единице измерения, равна единице.

2.2 Явные и неявные определения

Определения подразделяются на:

а) явные , в которых чётко выделены определяемое и определяющие понятия (например, определение через ближайший род и видовое отличие);

б) неявные , которые строятся по принципу замены одного понятия другим с более широким объёмом и окончание цепочки есть неопределяемое понятие, т.е. формально-логическое определение (например, квадрат - ромб с прямым углом; ромб - параллелограмм с равными смежными сторонами; параллелограмм - четырёхугольник, с попарно параллельными сторонами; четырёхугольник - фигура, состоящая из 4 углов, 4 вершин, 4 сторон). В школьных определениях чаще всего практикуется первый способ, схема которого такова: имеем множества и некоторое свойство тогда

Основное требование при построение определений: определяемое множество должно быть подмножеством минимального множества. Например, сравним два определения: (1) Квадрат есть ромб с прямым углом; (2) Квадрат есть параллелограмм с равными сторонами и прямым углом (избыточное).

Всякое определение есть решение задачи на “доказательство существования”. Например, прямоугольный треугольник есть треугольник с прямым углом; его существование - построение.

2.3 Характеристика основных типов ошибок

Отметим типичные ошибки, которые встречаются у учащихся при определении понятий:

1) использование не минимального множества в качестве определяющего, включение логически зависимых свойств (характерно при повторении материала).

Например: а) параллелограмм - четырёхугольник, у которого противоположные стороны равны и параллельны; б) прямая называется перпендикулярной к плоскости, если она, пересекаясь с этой плоскостью, образует прямой угол с каждой прямой, проведённой на плоскости через точку пересечения, вместо: “прямая называется перпендикулярной к плоскости, если она перпендикулярна ко всем прямым этой плоскости”;

2) использование определяемого понятия и в качестве определяющего.

Например, определяется прямой угол не как один из равных смежных углов, а как углы с взаимно перпендикулярными сторонами;

3) тавтология - определяется понятие через само это понятие.

Например, две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия;

4) иногда в определении указывается не то определяющее множество, из которого выделяется определяемое подмножество.

Например, “медиана есть прямая …” вместо ”медиана есть отрезок, соединяющий…”;

5) в определениях, даваемых учащимися, иногда совсем отсутствует определяемое понятие, что возможно лишь тогда, когда учащиеся не приучены давать полные ответы.

Методика исправления ошибок в определениях предполагает, первоначально, выяснения сути допущенных ошибок, а затем предупреждение их повторения.

3. Структура определения

1) Конъюнктивная структура : две точки и называются симметричными относительно прямой p(A (x )), если эта прямая p перпендикулярна отрезку и проходит через его середину. Будем также считать, что каждая точка прямой р симметрична себе относительно прямой р (наличие союза “и”) (* - “Биссектрисой угла называется луч, который исходит из его вершины, проходит между его сторонами и делит угол пополам”).

2) Конструктивная структура : “Пусть - данная фигура и р - фиксированная прямая. Возьмём произвольную точку фигуры и опустим перпендикуляр на прямую р. На продолжение перпендикуляра за точку отложим отрезок, равный отрезку. Преобразование фигуры в фигуру, при котором каждая точка переходит в точку, построенную указанным образом, называют симметрией относительно прямой р.”

3) Дизъюнктивная структура : определение множества Z целых чисел можно записать на языке свойств в виде Z N или N или =0, где N - множество чисел, противоположных натуральным.

4. Характеристика основных этапов изучения математических понятий

Методика работы над определением предполагает: 1) знание определения; 2) обучение распознавания объекта, соответствующего данному определению; 3) построение различных контрпримеров. Например, понятие “прямоугольный треугольник” и работа по распознаванию его составных элементов:

Изучение математических определений можно подразделить на три этапа:

1-й этап - введение - создание на уроке ситуации, когда учащиеся либо сами “открывают” новое, самостоятельно формируют для них определения, либо просто подготавливаются к их пониманию.

2-й этап - обеспечение усвоения - сводится к тому, чтобы школьники:

а) научились применять определение;

б) быстро и безошибочно запоминать их;

в) понимали каждое слово в их формулировках.

3-й этап - закрепление - осуществляется на последующих уроках и сводится к повторению их формулировок и обработке навыков применения к решению задач.

Ознакомление с новыми понятиями проводятся:

1 способ: учащиеся подготавливаются к самостоятельному формированию определения.

2 способ: учащиеся готовятся к сознательному восприятию, пониманию нового математического предложения, формулировка которого им сообщается затем в готовом виде.

3 способ: учитель сам формулирует новое определение без какой-либо подготовки, а затем сосредотачивает усилия учащихся на их усвоении и закреплении.

1 и 2 способ представляют эвристический метод, 3 способ - догматический. Использование любого из способов должно соответствовать уровню подготовленности класса и опыта учителя.

5. Характеристика приемов введения понятий

Возможны следующие приёмы при введении понятий:

1) можно составить такие упражнения, которые позволяют учащимся быстро сформулировать определение нового понятия.

Например: а) Выписать несколько первых членов последовательности (), у которой =2, . Такая последовательность называется геометрической прогрессией. Попытайтесь сформулировать её определение. Можно ограничиться подготовкой к восприятию нового понятия.

б) Выписать несколько первых членов последовательности (), у которой =4, Далее учитель сообщает, что такая последовательность называется арифметической прогрессией и сам сообщает её определение.

2) при изучении геометрических понятий упражнения формулируются таким образом, чтобы учащиеся построили сами необходимую фигуру и смогли выделить признаки нового понятия, необходимые для формулировки определения.

Например: постройте произвольный треугольник, соедините отрезком его вершину с серединой противоположной стороны. Такой отрезок называется медианой. Сформулируйте определение медианы.

Иногда предлагается составить модель либо, рассматривая готовые модели и чертежи, выделить признаки нового понятия и сформулировать его определение.

Например: введено в 10 классе определение параллелепипеда. По предложенным моделям наклонного, прямого и прямоугольного параллелепипедов выделить признаки, по которым эти понятия различаются. Сформулировать соответствующие определения прямого и прямоугольного параллелепипедов.

3) Многие алгебраические понятия вводятся на основании рассмотрения частных примеров.

Например: графиком линейной функции является прямая.

4) Метод целесообразных задач, (разработан С.И. Шохором-Троцким) С помощью специально подобранной задачи учащиеся приходят к выводу о необходимости введения нового понятия и целесообразности придания ему именно такого смысла, который оно уже имеет в математике.

В 5-6 классах таким методом вводятся понятия: уравнение, корень уравнения, решение неравенств, понятие действий сложения, вычитания, умножения, деления над натуральными числами, десятичными и обыкновенными дробями и т.д.

Конкретно-индуктивный метод

Сущность:

а) рассматриваются конкретные примеры;

б) выделяются существенные свойства;

в) формулируется определение;

г) выполняются упражнения: на распознавание; на конструирование;

д) работа над свойствами, не включёнными в определение;

е) применение свойств.

Например: тема - параллелограммы:

1, 3, 5 - параллелограммы.

б) существенные признаки: четырёхугольник, попарная параллельность сторон.

в) распознавание, построение:

г) найти (построить) четвёртую вершину параллелограмма (* - задача №3, ст.96, Геометрия 7-11 класс: Сколько можно построить параллелограммов с вершинами в трёх заданных точках, не лежащих на одной прямой? Постройте их.).

д) другие свойства:

AC и BD пересекаются в точке О и АО=ОС, ВО=ОD; АВ=СD, AD=BC.

е) А=С, В=D.

Закрепление: решение задач №4-23, стр.96-97, Геометрия 7-11, Погорелов.

Перспективное значение:

а) используется при изучении и определении прямоугольника и ромба;

б) принцип параллельности и равенства отрезков, заключённых между параллельными прямыми в теореме Фалеса;

в) понятие параллельного переноса (вектора);

г) свойство параллелограмма используется при выводе площади треугольника;

д) параллельность и перпендикулярность в пространстве; параллелепипед; призма.

Абстрактно-дедуктивный метод

Сущность:

а) определение понятия: - квадратное уравнение;

б) выделение существенных свойств: х - переменная; a, b, c - числа; а?0 при

в) конкретизация понятия: - приведенное; примеры уравнений

г) упражнения: на распознавание, на конструирование;

д) изучение свойств, не включённых в определение: корни уравнения и их свойства;

е) решение задач.

В школе абстрактно-дедуктивный способ применяется тогда, когда новое понятие полностью подготовлено изучением предыдущих понятий, в том числе изучением ближайшего родового понятия, а видовое отличие нового понятия весьма простое и понятное учащимся.

Например: определение ромба после изучения параллелограмма.

Кроме того, указанный метод используется:

1) при составлении “родословной” определения понятия:

Квадрат - это прямоугольник, у которого все стороны равны.

Прямоугольник - это параллелограмм, у которого все углы прямые.

Параллелограмм - это четырёхугольник, у которого противолежащие стороны параллельны.

Четырёхугольник - фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков.

Иначе говоря, родословная представляет собой цепочку понятий, построенных через обобщения предыдущего понятия, финалом которой является неопределяемое понятие (напомним, что в курсе школьной геометрии к таковым относятся точка, фигура, плоскость, расстояние (лежать между));

2) классификация;

3) применяется к доказательствам теорем и решению задач;

4) широко используется в процессе актуализации знаний.

Рассмотрим этот процесс, представленный системой задач:

а) Дан прямоугольный треугольник со сторонами 3см и 4см. Найти длину медианы, проведённой к гипотенузе.

б) Доказать, что медиана, проведённая из вершины прямого угла треугольника, равна половине гипотенузы.

в) Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, проведёнными к гипотенузе.

г) На продолжении наибольшей стороны АС треугольника АВС отложен отрезок СМ, равный стороне ВС. Доказать, что АВМ тупой.

В большинстве случаев в школьном преподавании применяется конкретно-индуктивный способ. В частности, таким методом вводятся понятия в пропедевтических циклах начал алгебры и геометрии в 1-6 классах, причём многие определяющие понятия вводятся описательно, без строгих формулировок.

Незнание учителем различных методов введения определений приводит к формализму, который проявляется следующим образом:

а) учащиеся затрудняются применить определения в непривычной ситуации, хотя и помнят его формулировку .

Например: 1) считают функцию - чётной, т.к. “cos” - чётная;

2) - не понимают связь между монотонностью функции и решением неравенства, т.е. не могут применять соответствующие определения, в которых основной приём исследования состоит в оценке знака разности значений функции, т.е. в решении неравенства.

б) учащиеся обладают навыками решения задач какого-либо типа, но не могут объяснить, на основании каких определений, аксиом, теорем они выполняют те или иные преобразования.

Например: 1) - преобразовать согласно этой формуле и 2) представьте, что на столе - модель четырёхугольной пирамиды. Какой многоугольник будет основанием этой пирамиды, если модель положить на стол боковой гранью? (четырёхугольник).

Процесс формирования знаний, умений и навыков не ограничивается сообщением новых знаний.

Эти знания должны быть усвоены и закреплены.

6. Методика обеспечения усвоения математических понятий (предложений)

1. Формулировки многих определений (теорем, аксиом) учащимся понятны, легко запоминаются после небольшого числа повторений, поэтому целесообразно в начале предложить их запомнить, а затем научить применять к решению задач.

Метод, при котором процессы запоминания определений и формирования навыков их применения протекают у учащихся неодновременно (раздельно), называют раздельным.

Раздельный метод используется при изучении определений хорды, трапеции, чётной и нечётной функции, теорем Пифагора, признаков параллельности прямых, теоремы Виета, свойств числовых неравенств, правил умножения обыкновенных дробей, сложения дробей с одинаковыми знаменателями и т.д.

Методика:

а) учитель формулирует новое определение;

б) учащиеся класса для запоминания повторяют его 1-3 раза;

в) отрабатывается на упражнениях.

2. Компактный метод состоит в том, что учащиеся читают по частям математическое определение или предложение и по ходу чтения одновременно выполняют упражнение.

Читая формулировку несколько раз, они попутно запоминают её.

Методика:

а) подготовка математического предложения к применению. Определение разбивается на части по признакам, теорема - на условие и заключение;

б) образец действий, предлагаемый учителем, который показывает, как работать с подготовленным текстом: читаем его по частям и одновременно выполняем упражнения;

в) учащиеся по частям читают определение и одновременно выполняют упражнения, руководствуясь подготовленным текстом и образцом учителя;

Например: определение биссектрисы в пятом классе:

1) введение понятия проводится методом целесообразных задач на модели угла;

2) выписывается определение: “Луч, выходящий из вершины угла и делящий его на две равные части, называется биссектрисой угла ”;

3) выполняется задание: указать, какие из линий на чертежах являются биссектрисами углов (равные углы обозначаются одинаковым числом дуг).

На одном из чертежей учитель показывает применение определения (см. дальше);

4) работа продолжается учениками.

3. Комбинация раздельного и компактного метода : после вывода нового правила оно повторяется 2-3 раза, а затем учитель требует в процессе выполнения упражнений формулировать правило по частям.

4. Алгоритмический метод используется для формирования навыков применения математических предложений.

Методика: математические предложения заменяются алгоритмом. Читая поочередно указания алгоритма, ученик решает задачу. Таким образом у него формируется навык применения определения, аксиомы и теоремы. При этом допускается либо последующее заучивание определения, либо прочтение вместе с алгоритмом и самого определения.

Основные этапы метода:

а) подготовка к работе списка указаний, который либо дается в готовом виде, с последующим разъяснением, либо учащиеся подводятся к его самостоятельному составлению;

б) образец ответа учителя;

в) аналогичным образом работают ученики.

Раздельный и компактный методы применяются при изучении определений. Алгоритмический может быть применен только при изучении трудно усваиваемых определений (например, необходимые и достаточные условия). Наиболее широко алгоритмический метод используется при формировании навыков решения задач.

7. Методика закрепления математических понятий и предложений

1й приём:

учитель предлагает сформулировать и применить те или иные определения, аксиомы, теоремы, которые встречаются по ходу решения задач.

Например: построить график функции; определение четной (нечетной) функции; необходимое и достаточное условие существования.

2й приём:

учитель предлагает сформулировать ряд определений, теорем, аксиом во время фронтального опроса, с тем, чтобы повторить их и заодно проверить, помнят ли их ученики. Этот приём вне решения задач не эффективен. Возможно сочетать фронтальный опрос со специальными упражнениями, которые требуют от учащихся умения применять определения, теоремы, аксиомы в различных ситуациях, умения быстро ориентироваться в условии задачи.

Заключение

Знание определения не гарантирует усвоения понятия. Методическая работа с понятиями должна быть направлена на преодоление формализма, который проявляется в том, что учащиеся не могут распознать определяемый объект в различных ситуациях, где он встречается.

Распознавание объекта, соответствующего данному определению, и построение контрпримеров возможно лишь при ясном представлении о структурах рассматриваемого определения, под которой в схеме определения () понимают структуру правой части.

Литература

1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае», 1997 г.

2. Н.М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990 г.

3. Г. Фройденталь «Математика как педагогическая задача», М., «Просвещение», 1998 г.

4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997 г.

5. Ю.М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999 г.

6. А.А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000 г.


Подобные документы

    Основы методики изучения математических понятий. Математические понятия, их содержание и объём, классификация понятий. Психолого-педагогические особенности обучения математике в 5-6 классах. Психологические аспекты формирования понятий.

    дипломная работа , добавлен 08.08.2007

    Сущность формирования понятий, его общая схема и особенности, этапы реализации и возможные пути. Классификация понятий и ее методика для математических дисциплин. Определение как завершающий этап формирования понятия, его разновидности и особенности.

    реферат , добавлен 24.04.2009

    "Понятие" в психолого-педагогической, философской, учебно-методической литературе. Виды и определения математических понятий в начальной математике. Роль, функции классификации при формировании понятий. Система формирования математических понятий.

    дипломная работа , добавлен 23.11.2008

    Психолого-педагогические основы формирования научных понятий. Сущность и источники витагенного обучения. Методы и приемы выявления и актуализации витагенного опыта учащихся. Формирование научных понятий как педагогическая проблема. Виды научных понятий.

    дипломная работа , добавлен 13.12.2009

    Анализ основных математических понятий. Методика изучения табличных случаев умножения и деления. Задания для самостоятельной работы учащихся. Реализация индивидуального подхода в обучении. Упражнения для усвоения таблицы умножения, приемы проверки знаний.

    дипломная работа , добавлен 13.12.2013

    статья , добавлен 15.09.2009

    Наглядность как средство усвоения грамматических понятий. Система изучения грамматических понятий на уроках русского языка с использованием наглядности. Результаты эксперимента по определению уровня изучения грамматических понятий младшими школьниками.

    дипломная работа , добавлен 03.05.2015

    Компоненты математических способностей, степень их проявления в младшем школьном возрасте, природные предпосылки и условия формирования. Основные формы и методика проведения внеклассной работы: кружковые занятия, математические вечера, олимпиады, игры.

    дипломная работа , добавлен 06.11.2010

    Методика ознакомления учащихся с аксиомами в курсе школьной геометрии, традиционно-синтетический координатно-векторный методы, роль аксиом в построении школьного курса. Методика введения понятий и теорем, схема изучения признаков равенства треугольников.

    реферат , добавлен 07.03.2010

    Особенности изучения математики в начальной школе согласно Федеральному государственному образовательному стандарту начального общего образования. Содержание курса. Анализ основных математических понятий. Сущность индивидуального подхода в дидактике.

Лекция 5. Математические понятия

1. Объем и содержание понятия. Отношения между понятиями

2. Определœение понятий. Определяемые и неопределяемые понятия.

3. Способы определœения понятий.

4. Основные выводы

Понятия, которые изучаются в начальном курсе математики, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнения и др. Третью группу составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Чтобы изучать всœе разнообразие понятий, нужно иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли , отражающую объекты (предметы и явления) в их существенных и общих свойствах. Языковой формой понятия является слово (термин) или группа слов.

Составить понятие об объекте - ϶ᴛᴏ значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная состоит по сути в том, что математические объекты, о которых крайне важно составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. К примеру, в геометрии изучают форму и размеры предметов, не принимая во внимание другие свойства: цвет, массу, твердость и т.д. От всœего этого абстрагируются. По этой причине в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира , математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. К примеру, общее понятие функции как соответствия является обобщением понятий конкретных функции, ᴛ.ᴇ. абстракцией от абстракций.

  1. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определœенными свойствами. К примеру, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные . Свойство считают существенным для объекта͵ если оно присуще этому объекту и без него он не может существовать . К примеру, для квадрата существенными являются всœе свойства, названные выше. Несущественно для квадрата АВСD свойство «сторона АВ горизонтальна».

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду всœе геометрические фигуры, являющиеся квадратами. Считают, что множество всœех квадратов составляет объем понятия «квадрат».

Вообще, объем понятия - ϶ᴛᴏ множество всœех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Рассмотрим, к примеру, понятие «прямоугольник».

Объем понятия - ϶ᴛᴏ множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот . Так, к примеру, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («всœе стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. По этой причине важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, ᴛ.ᴇ. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, c, d, …, z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

В случае если А ⊂ В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.

К примеру, если а – «прямоугольник», b – «четырехугольник», то их объемы А и В находятся в отношении включения (А ⊂ В и А ≠ В), в связи с этим всякий прямоугольник является четырехугольником. По этой причине можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

В случае если А = В, то говорят, что понятия А и В тождественны.

К примеру, тождественны понятия «равносторонний треугольник» и «равнобедренный треугольник», так как их объемы совпадают.

Рассмотрим подробнее отношение рода и вида между понятиями.

1. В первую очередь, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. К примеру, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

2. Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди указанных можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

3. В-третьих, видовое понятие обладает всœеми свойствами родового понятия. К примеру, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всœеми свойствами, присущими прямоугольнику.

Так как объем понятия – множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, к примеру, отношения между следующими парами понятий а и b, если:

1) а – «прямоугольник», b – «ромб»;

2) а – «многоугольник», b – «параллелограмм»;

3) а – «прямая», b – «отрезок».

Отношения между множествами отображены на рисунке соответственно

2. Определœение понятий . Определяемые и неопределяемые понятия.

Появление в математике новых понятий, а значит, и новых терминов, обозначающих эти понятия, предполагает их определœение.

Определœением обычно называют предложение, разъясняющее суть нового термина (или обозначения). Как правило, делают это на основе ранее введенных понятий. К примеру, прямоугольник можно определить так: «Прямоугольником принято называть четырехугольник, у которого всœе углы прямые». В этом определœении есть две части – определяемое понятие (прямоугольник) и определяющее понятие (четырехугольник, у которого всœе углы прямые). В случае если обозначить через а первое понятие, а через b – второе, то данное определœение можно представить в таком виде:

а есть (по определœению) b.

Слова «есть (по определœению)» обычно заменяют символом ⇔, и тогда определœение выглядит так:

Читают: «а равносильно b по определœению». Можно прочитать эту запись еще и так: «а тогда и только тогда, когда b.

Определœения, имеющие такую структуру, называются явными . Рассмотрим их подробнее.

Обратимся ко второй части определœения «прямоугольник».

В нем можно выделить:

1) понятие «четырехугольник», ĸᴏᴛᴏᴩᴏᴇ является родовым по отношению к понятию «прямоугольник».

2) свойство «иметь всœе углы прямые», ĸᴏᴛᴏᴩᴏᴇ позволяет выделить из всœевозможных четырехугольников один вид – прямоугольники; в связи с этим его называют видовым отличием.

Вообще видовое отличие - ϶ᴛᴏ свойства (одно или несколько), которые позволяют выделить определяемые объекты из объема родового понятия.

Итоги нашего анализа можно представить в виде схемы:

Знак «+» используется как замена частица «и».

Нам известно, что любое понятие имеет объем. В случае если понятие а определœено через род и видовое отличие, то о его объеме – множестве А – можно сказать, что в нем содержатся такие объекты, которые принадлежат множеству С (объему родового понятия с) и обладают свойством Р:

А = {х/ х ∈ С и Р(х)}.

Так как определœение понятия через род и видовое отличие является по существу условным соглашением о введении нового термина для замены какой-либо совокупности известных терминов, то об определœении нельзя сказать, верное оно или неверное; его не доказывают и не опровергают. Но, формулируя определœения, придерживаются ряда правил. Назовем их.

1. Определœение должно быть соразмерным . Это означает, что объемы определяемого и определяющего понятий должны совпадать.

2. В определœении (или их системе) не должно быть порочного круга . Это означает, что нельзя определять понятие через само себя.

3. Определœение должно быть ясным . Требуется, к примеру, чтобы значения терминов, входящих в определяющее понятие, были известны к моменту введения определœения нового понятия.

4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному . Так, квадрат можно определить как:

а) прямоугольник, у которого сосœедние стороны равны;

б) прямоугольник, у которого диагонали взаимно перпендикулярны;

в) ромб, у которого есть прямой угол;

г) параллелограмм, у которого всœе стороны равны, а углы прямые.

Различные определœения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определœение включаются только некоторые. И тогда из возможных определœений выбирают одно, исходят из того, какое из них проще и целœесообразнее для дальнейшего построения теории.

Назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определœение знакомого понятия или построить определœение нового:

1. Назвать определяемое понятие (термин).

2. Указать ближайшее родовое понятие (по отношению к определяемому) понятие.

3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е сформулировать видовое отличие.

4. Проверить, выполнены ли правила определœения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).

Среди умений, которым учит математика и которым всем вам нужно учиться, большое значение имеет умение классифицировать понятия.

Дело в том, что математика, как и многие другие науки, изучает не единичные предметы или явления, а массовые . Так, когда вы изучаете треугольники, то изучаете свойства любых треугольников, а их бесконечное множество. Вообще объем любого математического понятия, как правило, бесконечен.

Для того чтобы различать объекты математических понятий, изучить их свойства, обычно эти понятия делят на виды, классы. Ведь, кроме общих свойств, любое математическое понятие обладает еще многими важными свойствами, присущими не всем объектам этого понятия, а лишь объектам некоторого вида. Так, прямоугольные треугольники, кроме общих свойств любых треугольников, обладают многими свойствами, весьма важными для практики, например теоремой Пифагора, соотношениями между углами и сторонами и т. д.

В процессе многовекового изучения математических понятий, в процессе их многочисленных применений в жизни, в других науках из их объема были выделены какие-то особые виды, имеющие наиболее интересные свойства, которые чаще всего встречаются и применяются в практике. Так, различных четырехугольников существует бесконечно много, но в практике, в технике наибольшее применение имеют лишь определенные их виды: квадраты, прямоугольники, параллелограммы, ромбы, трапеции.

Деление объема некоторого понятия на части и есть классификация этого понятия. Более точно под классификацией понимают распределение объектов какого-либо понятия на взаимосвязанные классы (виды, типы) по наиболее существенным признакам (свойствам). Признак (свойство), по которому про-изводится классификация (деление) понятия на виды (классы), называется основанием классификации.

Правильно построенная классификация понятия отражает наиболее существенные свойства и связи между объектами понятия, помогает лучше ориентироваться в множестве этих объектов, дает возможность устанавливать такие свойства этих объектов, которые наиболее важны для применения этого понятия в других науках и житейской практике.

Классификация понятия производится по одному или нескольким наиболее существенным основаниям.

Так, треугольники можно классифицировать по величине углов. Получаем такие виды: остроугольные (все углы острые), прямоугольные (один угол прямой, остальные острые), тупо-угольные (один угол тупой, остальные острые). Если же за основание деления треугольников принять соотношения между сторонами, то получаем такие виды: разносторонние, равнобедренные и правильные (равносторонние).

Сложнее, когда приходится классифицировать понятие по нескольким основаниям. Так, если выпуклые четырехугольники классифицировать по параллельности сторон, то по существу нам нужно разделить все выпуклые четырехугольники одновременно по двум признакам: 1) одна пара противоположных сторон параллельна или нет; 2) вторая пара противоположных сторон параллельна или нет. Получаем в результате три вида выпуклых четырехугольников: 1) четырехугольники с не параллельными сторонами; 2) четырехугольники с одной парой параллельных сторон - трапеции; 3) четырехугольники с двумя парами параллельных сторон - параллелограммы.

Весьма часто производят классификацию понятия поэтапно: сначала по одному основанию, затем некоторые виды делят на подвиды по другому основанию и т. д. Примером может служить классификация четырехугольников. На первом этапе их делят по признаку выпуклости. Затем выпуклые четырехугольники делят по признаку параллельности противоположных, сторон. В свою очередь параллелограммы делят по признаку наличия прямых углов и т. д.

При проведении классификации необходимо соблюдать определенные правила. Укажем главные из них.

  1. В качестве основания классификации можно брать лишь общий признак всех объектов данного понятия. Так, например, нельзя в качестве основания классификации алгебраических выражений брать признак расположения членов по степеням какой-то переменной. Этот признак не является общим для всех алгебраических выражений, например для дробных выражений или одночленов он не имеет смысла. Этим признаком обладают лишь многочлены, поэтому многочлены можно классифицировать по наивысшей степени главной переменной.
  2. Основанием для классификации надо брать существенные свойства (признаки) понятий. Рассмотрим опять понятие алгебраического выражения. Одним из свойств этого понятия является то, что переменные, входящие в алгебраическое выражение, обозначаются какими-то буквами. Это свойство является общим, но не является существенным, ибо от того, какой буквой обозначена та или иная переменная, характер выражения не зависит. Так, алгебраические выражения х+у и а+b - это по сути дела одно и то же выражение. Поэтому классифицировать выражения по признаку обозначения переменных буквами не следует. Другое дело, если за основание классификации алгебраических выражений взять признак вида действий, с помощью которых переменные соединены, т. е. действия, которые совершаются над переменными. Этот общий признак весьма существенный, и классификация по этому признаку будет правильной и полезной.
  3. На каждом этапе классификации можно применять лишь одно какое-то основание. Нельзя одновременно классифицировать понятие по двум различным признакам. Например, нельзя классифицировать треугольники сразу и по величине и по соотношению между сторонами, ибо в результате мы получим классы треугольников, которые имеют общие элементы (например, остроугольные и равнобедренные или тупоугольные и равнобедренные и т. д.). Здесь нарушено следующее требование к классификации: в результате классификации на каждом этапе получаемые классы (виды) не должны пересекаться.
  4. В то же время классификация по какому-либо основанию должна быть исчерпывающей и каждый объект понятия должен попасть в результате классификации в один и только один класс.

Поэтому разделение всех целых чисел на положительные и отрицательные неверно, ибо целое число нуль при этом не попало ни в один из классов. Надо говорить так: целые числа делятся на три класса - положительные, отрицательные и число нуль.

Часто при классификации понятий явно выделяются лишь некоторые классы, а остальные только подразумеваются. Так, например, при изучении алгебраических выражений обычно выделяют лишь такие их виды: одночлены, многочлены, дробные выражения, иррациональные. Но эти виды не исчерпывают всех видов алгебраических выражений, поэтому такая классификация является неполной.

Полная правильная классификация алгебраических выражений может быть произведена следующим образом.

На первой ступени классификации алгебраических выражений они делятся на два класса: рациональные и нерациональные. На второй ступени рациональные выражения делятся на целые и дробные. На третьей ступени целые выражения делятся на одночлены, многочлены и сложные целые выражения.

Эту классификацию можно представить в виде следующей

Задание 7

7.1. Почему нельзя классифицировать рациональные числа по их четности?

7.2. Установите, правильно ли произведено деление понятия:

а) Величины могут быть равными и неравными.

б) Функции бывают возрастающие и убывающие.

в) Равнобедренные треугольники могут быть остроугольными, прямоугольными и тупоугольными.

г) Прямоугольники бывают квадраты и ромбы.

7.3. Произведите деление понятия "геометрическая фигура" по свойству занимать часть плоскости и приведите примеры каждого вида.

7.4. Постройте возможные схемы классификации рациональных чисел.

7.5. Постройте схему классификации следующих понятий:

а) четырехугольник;

б) два угла.

7.6. Проведите классификацию следующих понятий:

а) треугольник и окружность;

б) углы в окружности;

в) две окружности;

г) прямая и окружность;

д) квадратные уравнения;

е) система двух уравнений первой степени с двумя неизвестными.


Close