Математичним очікуванням (середнім значенням) випадкової величини X , заданої на дискретному імовірнісному просторі, називається число m = M [X] = ∑x i p i якщо ряд сходиться абсолютно.

Призначення сервісу. За допомогою сервісу в онлайн-режимі обчислюються математичне очікування, дисперсія та середньоквадратичне відхилення(Див. приклад). Крім цього, будується графік функції розподілу F(X).

Властивості математичного очікування випадкової величини

  1. Математичне очікування постійної величини дорівнює їй самій: M [C] = C, C - Постійна;
  2. M=C M[X]
  3. Математичне очікування суми випадкових величин дорівнює сумі їх математичних очікувань: M=M[X]+M[Y]
  4. Математичне очікування добутку незалежних випадкових величин дорівнює добутку їх математичних очікувань: M = M [X] M [Y], якщо X і Y незалежні.

Властивості дисперсії

  1. Дисперсія постійної величини дорівнює нулю: D(c)=0.
  2. Постійний множник можна винести з-під символу дисперсії, звівши його в квадрат: D(k*X)= k 2 D(X).
  3. Якщо випадкові величини X та Y незалежні, то дисперсія суми дорівнює сумі дисперсій: D(X+Y)=D(X)+D(Y).
  4. Якщо випадкові величини X та Y залежні: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсії справедлива обчислювальна формула:
    D(X)=M(X 2)-(M(X)) 2

Приклад. Відомі математичні очікування та дисперсії двох незалежних випадкових величин X і Y: M(x)=8, M(Y)=7, D(X)=9, D(Y)=6. Знайти математичне очікування та дисперсію випадкове величини Z=9X-8Y+7.
Рішення. Виходячи з властивостей математичного очікування: M (Z) = M (9X-8Y + 7) = 9 * M (X) - 8 * M (Y) + M (7) = 9 * 8 - 8 * 7 + 7 = 23 .
Виходячи з властивостей дисперсії: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81 * 9 - 64 * 6 = 345

Алгоритм обчислення математичного очікування

Властивості дискретних випадкових величин: їх значення можна перенумерувати натуральними числами; кожному значенню зіставити відмінну від нуля можливість.
  1. По черзі множимо пари: x i на p i.
  2. Складаємо добуток кожної пари x i p i .
    Наприклад, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функція розподілу дискретної випадкової величиниступінчаста, вона зростає стрибком у тих точках, ймовірності яких позитивні.

Приклад №1.

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математичне очікування знаходимо за формулою m = ∑x i p i.
Математичне очікування M[X].
M[x] = 1 * 0.1 + 3 * 0.2 + 4 * 0.1 + 7 * 0.3 + 9 * 0.3 = 5.9
Дисперсію знаходимо за формулою d = ∑x 2 i p i - M [x] 2 .
Дисперсія D[X].
D [X] = 1 2 * 0.1 + 3 2 * 0.2 + 4 2 * 0.1 + 7 2 * 0.3 + 9 2 * 0.3 - 5.9 2 = 7.69
Середнє квадратичне відхилення σ(x).
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Приклад №2. Дискретна випадкова величина має наступний ряд розподілу:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Знайти величину a, математичне очікування та середнє квадратичне відхилення цієї випадкової величини.

Рішення. Величину a знаходимо із співвідношення: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 або 0.24 = 3 a, звідки a = 0.08

Приклад №3. Визначити закон розподілу дискретної випадкової величини, якщо відома її дисперсія, причому х 1 x 1 = 6; x 2 = 9; x 3 = x; x 4 = 15
p 1 = 0,3; p 2 = 0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Рішення.
Тут треба скласти формулу знаходження дисперсії d(x):
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
де маточіння m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших даних
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
або -9/100 (x 2 -20x+96) = 0
Відповідно треба знайти коріння рівняння, причому їх буде два.
x 3 = 8, x 3 = 12
Вибираємо той, який задовольняє умову х 1 x 3 = 12

Закон розподілу дискретної випадкової величини
x 1 = 6; x 2 = 9; x 3 = 12; x 4 = 15
p 1 = 0,3; p 2 = 0,3; p 3 =0,1; p 4 =0,3

Рішення:

6.1.2 Властивості математичного очікування

1. Математичне очікування постійної величини дорівнює найпостійнішій.

2. Постійний множник можна виносити за знак математичного очікування.

3. Математичне очікування твору двох незалежних випадкових величин дорівнює твору їх математичних очікувань.

Ця властивість є справедливою для довільного числа випадкових величин.

4. Математичне очікування суми двох випадкових величин дорівнює сумі математичних очікувань доданків.

Ця властивість також справедлива довільного числа випадкових величин.

Приклад: M(X) = 5, M(Y)= 2. Знайти математичне очікування випадкової величини Z, застосувавши властивості математичного очікування, якщо відомо, що Z = 2X + 3Y.

Рішення: M(Z) = M(2X + 3Y) = M(2X) + M(3Y) = 2M(X) + 3M(Y) = 2∙5+3∙2 =

1) математичне очікування суми дорівнює сумі математичних очікувань

2) постійний множник можна винести за знак математичного очікування

Нехай проводиться n незалежних випробувань, ймовірність появи події А в яких дорівнює р. Тоді має місце така теорема:

Теорема. Математичне очікування М(Х) числа появи події А n незалежних випробуваннях дорівнює добутку числа випробувань на ймовірність появи події у кожному випробуванні.

6.1.3 Дисперсія дискретної випадкової величини

Математичне очікування неспроможна повністю характеризувати випадковий процес. Крім математичного очікування треба запровадити величину, яка характеризує відхилення значень випадкової величини від математичного очікування.

Це відхилення дорівнює різниці між випадковою величиною та її математичним очікуванням. При цьому математичне очікування відхилення дорівнює нулю. Це тим, що одні можливі відхилення позитивні, інші негативні, й у їх взаємного погашення виходить нуль.

Дисперсією (розсіюванням)Дискретна випадкова величина називається математичне очікування квадрата відхилення випадкової величини від її математичного очікування.

Насправді такий спосіб обчислення дисперсії незручний, т.к. приводить при великій кількості значень випадкової величини до громіздких обчислень.

Тому застосовується інший спосіб.

Теорема. Дисперсія дорівнює різниці між математичним очікуванням квадрата випадкової величини Х та квадратом її математичного очікування.

Доведення. З огляду на те, що математичне очікування М(Х) і квадрат математичного очікування М 2 (Х) – величини постійні, можна записати:

приклад. Знайти дисперсію дискретної випадкової величини заданої законом розподілу.

Х
Х 2
р 0.2 0.3 0.1 0.4

Рішення: .

6.1.4 Властивості дисперсії

1. Дисперсія постійної величини дорівнює нулю. .

2. Постійний множник можна виносити за знак дисперсії, зводячи його у квадрат. .

3. Дисперсія суми двох незалежних випадкових величин дорівнює сумі дисперсій цих величин. .

4. Дисперсія різниці двох незалежних випадкових величин дорівнює сумі дисперсій цих величин. .

Теорема. Дисперсія числа появи події А в п незалежних випробувань, у кожному з яких ймовірність появи події постійна, дорівнює добутку числа випробувань на ймовірності появи і непояви події в кожному випробуванні.

Приклад: Знайти дисперсію ДСВ Х – числа події А в 2-х незалежних випробуваннях, якщо ймовірність появи події в цих випробуваннях однакові і відомо, що M (X) = 1,2.

Застосуємо теорему п. 6.1.2:

M(X) = np

M(X) = 1,2; n= 2. Знайдемо p:

1,2 = 2∙p

p = 1,2/2

q = 1 – p = 1 – 0,6 = 0,4

Знайдемо дисперсію за формулою:

D(X) = 2∙0,6∙0,4 = 0,48

6.1.5 Середнє квадратичне відхилення дискретної випадкової величини

Середнім квадратичним відхиленнямвипадкової величини Х називається квадратний корінь із дисперсії.

(25)

Теорема. Середнє квадратичне відхилення суми кінцевого числа взаємно незалежних випадкових величин дорівнює квадратному кореню із суми квадратів середніх квадратичних відхилень цих величин.

6.1.6 Мода та медіана дискретної випадкової величини

Модою M o ДСВназивається найбільш ймовірне значення випадкової величини (тобто значення, яке має найбільшу ймовірність)

Медіаною M e ДСВназивається значення випадкової величини, яке ділить ряд розподілу навпіл. Якщо число значень випадкової величини парне, медіана перебуває як середнє арифметичне двох середніх значень.

Приклад: Знайти моду та медіану ДСВ Х:

X
p 0.2 0.3 0.1 0.4

M e = = 5,5

Хід роботи

1. Ознайомитися з теоретичною частиною цієї роботи (лекції, підручник).

2. Виконати завдання за своїм варіантом.

3. Скласти звіт роботи.

4. Захистити роботу.

2. Мета роботи.

3. Хід роботи.

4. Вирішення свого варіанту.


6.4 Варіанти завдань для самостійної роботи

Варіант №1

1. Знайти математичне очікування, дисперсію, середнє квадратичне відхилення, моду та медіану ДСВ X, задану законом розподілу.

X
P 0.1 0.6 0.2 0.1

2. Знайти математичне очікування випадкової величини Z, якщо відомі математичні очікування X і Y: M(X)=6, M(Y)=4, Z=5X+3Y.

3. Знайти дисперсію ДСВ Х – числа події А в двох незалежних випробуваннях, якщо ймовірності появи подій у цих випробуваннях однакові і відомо, що М (Х) = 1.

4. Дано перелік можливих значень дискретної випадкової величини Х: x 1 = 1, x 2 = 2, x 3= 5, і навіть відомі математичні очікування цієї величини та її квадрата: , . Знайти ймовірності , , , Що відповідають можливим значенням , , і скласти закон розподілу ДСВ.

Варіант №2

X
P 0.3 0.1 0.2 0.4

2. Знайти математичне очікування випадкової величини Z, якщо відомі математичні очікування X та Y: M(Х)=5, M(Y)=8, Z=6X+2Y.

3. Знайти дисперсію ДСВ Х – числа події А в трьох незалежних випробуваннях, якщо ймовірності появи подій у цих випробуваннях однакові і відомо, що М (Х) = 0,9.

4. Дано перелік можливих значень дискретної випадкової величини Х: x 1 = 1, x 2 = 2, x 3 = 4, x 4= 10, і навіть відомі математичні очікування цієї величини та її квадрата: , . Знайти ймовірності , , , Що відповідають можливим значенням , , і скласти закон розподілу ДСВ.

Варіант №3

1. Знайти математичне очікування, дисперсію та середнє квадратичне відхилення ДСВ X, заданої законом розподілу.

X
P 0.5 0.1 0.2 0.3

2. Знайти математичне очікування випадкової величини Z, якщо відомі математичні очікування X і Y: M(X)=3, M(Y)=4, Z=4X+2Y.

3. Знайти дисперсію ДСВ Х – числа події А в чотирьох незалежних випробуваннях, якщо ймовірності появи подій у цих випробуваннях однакові і відомо, що М (х) = 1,2.

– кількість хлопчиків серед 10 новонароджених.

Цілком зрозуміло, що ця кількість заздалегідь не відома, і в черговому десятку дітей, що народилися, може виявитися:

Або хлопчиків – один і лише одинз перерахованих варіантів.

І, щоб дотримати форму, трохи фізкультури:

- Дальність стрибка в довжину (У деяких одиницях).

Її не в змозі передбачити навіть майстер спорту:)

Тим не менш, ваші гіпотези?

2) Безперервна випадкова величина – приймає Усечислові значення деякого кінцевого або нескінченного проміжку.

Примітка : у навчальній літературі популярні абревіатури ДСВ та НСВ

Спочатку розберемо дискретну випадкову величину, потім – безперервну.

Закон розподілу дискретної випадкової величини

– це відповідністьміж можливими значеннями цієї величини та їх ймовірностями. Найчастіше закон записують таблицею:

Досить часто зустрічається термін ряд розподілу, але в деяких ситуаціях він звучить двозначно, і тому я дотримуватимуся «закону».

А зараз дуже важливий момент: оскільки випадкова величина обов'язковоприйме одне із значень, то відповідні події утворюють повну групуі сума ймовірностей їх наступу дорівнює одиниці:

або, якщо записати згорнуто:

Так, наприклад, закон розподілу ймовірностей очок, що випали на кубику, має наступний вигляд:

Без коментарів.

Можливо, у вас склалося враження, що дискретна випадкова величина може набувати лише «хороших» цілей. Розвіємо ілюзію – вони можуть бути будь-якими:

Приклад 1

Деяка гра має наступний закон розподілу виграшу:

…напевно, ви давно мріяли про такі завдання:) Відкрию секрет – я також. Особливо після того, як завершив роботу над теорією поля.

Рішення: оскільки випадкова величина може прийняти лише одне з трьох значень, то відповідні події утворюють повну групу, Отже, сума їх ймовірностей дорівнює одиниці:

Викриваємо «партизана»:

- Отже, ймовірність виграшу умовних одиниць становить 0,4.

Контроль: , у чому потрібно переконатися.

Відповідь:

Не рідкість, коли закон розподілу потрібно скласти самостійно. Для цього використовують класичне визначення ймовірності, теореми множення / складання ймовірностей подійта інші фішки тервера:

Приклад 2

У коробці знаходяться 50 лотерейних квитків, серед яких 12 виграшних, причому 2 з них виграють по 1000 рублів, а решта – по 100 рублів. Скласти закон розподілу випадкової величини - розміру виграшу, якщо з коробки навмання витягується один квиток.

Рішення: Як ви помітили, значення випадкової величини прийнято розташовувати в порядок їх зростання. Тому ми починаємо з найменшого виграшу, і саме карбованців.

Усього таких квитків 50 – 12 = 38, і за класичному визначенню:
- Імовірність того, що навмання витягнутий квиток виявиться безвиграшним.

З рештою випадків все просто. Імовірність виграшу рублів становить:

Перевірка: і це особливо приємний момент таких завдань!

Відповідь: шуканий закон розподілу виграшу:

Наступне завдання для самостійного вирішення:

Приклад 3

Імовірність того, що стрілець вразить мету, дорівнює . Скласти закон розподілу випадкової величини – кількості влучень після двох пострілів.

…я знав, що ви за ним скучили:) Згадуємо теореми множення та додавання. Рішення та відповідь наприкінці уроку.

Закон розподілу повністю описує випадкову величину, проте на практиці буває корисно (а іноді й корисніше) знати лише деякі її числові характеристики .

Математичне очікування дискретної випадкової величини

Говорячи простою мовою, це середньоочікуване значенняпри багаторазовому повторенні випробувань. Нехай випадкова величина набуває значення з ймовірностями відповідно. Тоді математичне очікування цієї випадкової величини дорівнює сумі творіввсіх її значень відповідні ймовірності:

або в згорнутому вигляді:

Обчислимо, наприклад, математичне очікування випадкової величини – кількості очок, що випали на гральному кубику:

Тепер згадаємо нашу гіпотетичну гру:

Виникає питання: а чи вигідно взагалі грати у цю гру? …у кого якісь враження? Адже «навскидку» і не скажеш! Але це питання можна легко відповісти, обчисливши математичне очікування, по суті – середньозваженийза ймовірностями виграш:

Таким чином, математичне очікування цієї гри програшно.

Не вір враженням – вір цифрам!

Так, тут можна виграти 10 і навіть 20-30 разів поспіль, але на довгій дистанції на нас чекає неминуче руйнування. І я не радив би вам грати в такі ігри:) Ну, може, тільки заради розваги.

З усього вищесказаного випливає, що математичне очікування – це вже невипадкова величина.

Творче завдання для самостійного дослідження:

Приклад 4

Містер Х грає в європейську рулетку за наступною системою: постійно ставить 100 рублів на червоне. Скласти закон розподілу випадкової величини – його виграшу. Обчислити математичне очікування виграшу та округлити його до копійок. Скільки в середньомупрограє гравець із кожної поставленої сотні?

Довідка : європейська рулетка містить 18 червоних, 18 чорних та 1 зелений сектор («зеро»). У разі випадання «червоного» гравцеві виплачується подвоєна ставка, інакше вона йде до доходу казино

Існує багато інших систем гри в рулетку, для яких можна скласти свої таблиці можливостей. Але це той випадок, коли нам не потрібні ніякі закони розподілу та таблиці, бо достеменно встановлено, що математичне очікування гравця буде таким самим. Від системи до системи змінюється лише

Закон розподілу повністю характеризує випадкову величину. Однак часто закон розподілу невідомий і доводиться обмежуватись меншими відомостями. Іноді навіть вигідніше користуватись числами, які описують випадкову величину сумарно, такі числа називають числовими характеристикамидовільної величини. До важливих числових характеристик належить математичне очікування.

Математичне очікування, як буде показано далі, приблизно дорівнює середньому значенню випадкової величини. Для вирішення багатьох завдань достатньо знати математичне очікування. Наприклад, якщо відомо, що математичне очікування числа очок, що вибиваються, у першого стрілка більше, ніж у другого, то перший стрілець в середньому вибиває більше очок, ніж другий, і, отже, стріляє краще за другий.

Визначення4.1: Математичним очікуваннямдискретної випадкової величини називають суму творів її можливих значень з їхньої ймовірності.

Нехай випадкова величина Xможе приймати лише значення x 1, x 2, … x nймовірності яких відповідно рівні p 1, p 2, … p n .Тоді математичне очікування M (X) випадкової величини Xвизначається рівністю

M (X) = x 1 p 1 + x 2 p 2 + … + x n p n.

Якщо дискретна випадкова величина Xприймає лічильна безліч можливих значень, то

,

причому математичне очікування існує, якщо ряд правої частини рівності сходиться абсолютно.

приклад.Знайти математичне очікування кількості події Aв одному випробуванні, якщо ймовірність події Aдорівнює p.

Рішення:Випадкова величина X- Число появи події Aмає розподіл Бернуллі, тому

Таким чином, математичне очікування числа події в одному випробуванні дорівнює ймовірності цієї події.

Імовірнісний сенс математичного очікування

Нехай зроблено nвипробувань, у яких випадкова величина Xприйняла m 1раз значення x 1, m 2раз значення x 2 ,…, m kраз значення x k, причому m 1 + m 2 + … + m k = n. Тоді сума всіх значень, прийнятих X, дорівнює x 1 m 1 + x 2 m 2 + …+ x k m k .

Середнє арифметичне всіх значень, прийнятих випадковою величиною, буде

Ставлення m i / n- відносна частота W iзначення x iприблизно дорівнює ймовірності появи події p i, де тому

Імовірнісний зміст отриманого результату такий: математичне очікування приблизно дорівнює(Тим точніше, чим більше число випробувань) середнього арифметичного значень випадкової величини, що спостерігаються.

Властивості математичного очікування

Властивість1:Математичне очікування постійної величини дорівнює самій постійній

Властивість2:Постійний множник можна виносити за знак математичного очікування

Визначення4.2: Дві випадкові величининазиваються незалежнимиякщо закон розподілу однієї з них не залежить від того, які можливі значення прийняла інша величина. В іншому випадку випадкові величини залежні.

Визначення4.3: Декілька випадкових величинназивають взаємно незалежними, якщо закони розподілу будь-якого з них не залежать від того, які можливі значення прийняли інші величини.

Властивість3:Математичне очікування твору двох незалежних випадкових величин дорівнює твору їхніх математичних очікувань.

Наслідок:Математичне очікування твору кількох взаємно незалежних випадкових величин дорівнює добутку їх математичних очікувань.

Властивість4:Математичне очікування суми двох випадкових величин дорівнює сумі їх математичних очікувань.

Наслідок:Математичне очікування суми кількох випадкових величин дорівнює сумі їх математичних очікувань.

приклад.Обчислимо математичне очікування біномної випадкової величини X –числа настання події Aв nдослідах.

Рішення:Загальне число Xпояви події Aу цих випробуваннях складається з чисел появи події в окремих випробуваннях. Введемо випадкові величини X i- Число появи події в i-ом випробуванні, які є Бернуллієвськими випадковими величинами з математичним очікуванням, де . За якістю математичного очікування маємо

Таким чином, математичне очікування біномного розподілу з параметрами n і p дорівнює добутку np.

приклад.Імовірність влучення в ціль при стрільбі з гармати p = 0,6.Знайти математичне очікування загальної кількості влучень, якщо буде зроблено 10 пострілів.

Рішення:Попадання при кожному пострілі не залежить від результатів інших пострілів, тому події, що розглядаються, незалежні і, отже, шукане математичне очікування

Будуть і завдання для самостійного вирішення, до яких можна переглянути відповіді.

Математичне очікування та дисперсія – найчастіше застосовувані числові характеристики випадкової величини. Вони характеризують найважливіші риси розподілу: його становище та рівень розкиданості. Математичне очікування часто називають просто середнім значенням довільної величини. Дисперсія випадкової величини – характеристика розсіювання, розкиданості випадкової величини у її математичного очікування.

Багато завдань практики повна, вичерпна характеристика випадкової величини - закон розподілу - або може бути отримана, або взагалі не потрібна. У таких випадках обмежуються приблизним описом випадкової величини з допомогою числових характеристик.

Математичне очікування дискретної випадкової величини

Підійдемо до поняття математичного очікування. Нехай маса деякої речовини розподілена між точками осі абсцис x1 , x 2 , ..., x n. При цьому кожна матеріальна точка має відповідну їй масу з ймовірністю p1 , p 2 , ..., p n. Потрібно вибрати одну точку на осі абсцис, що характеризує становище всієї системи матеріальних точок, з урахуванням їх мас. Природно як така точка взяти центр маси системи матеріальних точок. Це середнє зважене значення випадкової величини X, в яке абсциса кожної точки xiвходить з "вагою", що дорівнює відповідній ймовірності. Отримане в такий спосіб середнє значення випадкової величини Xназивається її математичним очікуванням.

Математичним очікуванням дискретної випадкової величини називається сума творів всіх можливих її значень на ймовірності цих значень:

приклад 1.Організована безпрограшна лотерея. Є 1000 виграшів, їх 400 по 10 крб. 300 – по 20 руб. 200 – по 100 руб. і 100 – по 200 руб. Який середній розмір виграшу для того, хто купив один квиток?

Рішення. Середній виграш ми знайдемо, якщо загальну суму виграшів, яка дорівнює 10 * 400 + 20 * 300 + 100 * 200 + 200 * 100 = 50 000 руб, розділимо на 1000 (загальна сума виграшів). Тоді отримаємо 50 000/1000 = 50 руб. Але вираз для підрахунку середнього виграшу можна уявити й у такому вигляді:

З іншого боку, в умовах розмір виграшу є випадковою величиною, яка може приймати значення 10, 20, 100 і 200 руб. із ймовірностями, рівними відповідно 0,4; 0,3; 0,2; 0,1. Отже, очікуваний середній виграш дорівнює сумі творів розмірів виграшів на ймовірність їх отримання.

приклад 2.Видавець вирішив видати нову книгу. Продавати книгу він збирається за 280 руб., З яких 200 отримає він сам, 50 - книгарня і 30 - автор. У таблиці наведено інформацію про витрати на видання книги та ймовірність продажу певної кількості екземплярів книги.

Знайти очікуваний прибуток видавця.

Рішення. Випадкова величина "прибуток" дорівнює різниці доходів від продажу та вартості витрат. Наприклад, якщо буде продано 500 екземплярів книги, то доходи від продажу дорівнюють 200 * 500 = 100000, а витрати на видання 225 000 руб. Таким чином, видавцеві загрожує збиток розміром 125000 руб. У наступній таблиці узагальнено очікувані значення випадкової величини - прибутку:

ЧислоПрибуток xi Ймовірність pi xi p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всього: 1,00 25000

Таким чином, отримуємо математичне очікування прибутку видавця:

.

приклад 3.Імовірність влучення при одному пострілі p= 0,2. Визначити витрату снарядів, які забезпечують математичне очікування числа влучень, що дорівнює 5.

Рішення. З тієї ж формули математичного очікування, яку ми використовували досі, висловлюємо x- Витрата снарядів:

.

приклад 4.Визначити математичне очікування випадкової величини xчисла попадань при трьох пострілах, якщо ймовірність попадання при кожному пострілі p = 0,4 .

Підказка: ймовірність значень випадкової величини знайти за формулі Бернуллі .

Властивості математичного очікування

Розглянемо властивості математичного очікування.

Властивість 1.Математичне очікування постійної величини дорівнює цій постійній:

Властивість 2.Постійний множник можна виносити за знак математичного очікування:

Властивість 3.Математичне очікування суми (різниці) випадкових величин дорівнює сумі (різниці) їх математичних очікувань:

Властивість 4.Математичне очікування добутку випадкових величин дорівнює добутку їх математичних очікувань:

Властивість 5.Якщо всі значення випадкової величини Xзменшити (збільшити) на одне й те саме число З, то її математичне очікування зменшиться (збільшиться) на те число:

Коли не можна обмежуватися лише математичним очікуванням

Найчастіше лише математичне очікування неспроможна достатньою мірою характеризувати випадкову величину.

Нехай випадкові величини Xі Yзадані такими законами розподілу:

Значення X Ймовірність
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значення Y Ймовірність
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математичні очікування цих величин однакові - дорівнюють нулю:

Проте характер розподілу їх різний. Випадкова величина Xможе приймати тільки значення, що мало відрізняються від математичного очікування, а випадкова величина Yможе приймати значення, які значно відхиляються від математичного очікування. Аналогічний приклад: середня заробітна плата не дає можливості судити про питому вагу високо-і низькооплачуваних робітників. Іншими словами, з математичного очікування не можна судити про те, які відхилення від нього, хоч би в середньому, можливі. Для цього необхідно знайти дисперсію випадкової величини.

Дисперсія дискретної випадкової величини

Дисперсієюдискретної випадкової величини Xназивається математичне очікування квадрата відхилення її від математичного очікування:

Середнім квадратичним відхиленням випадкової величини Xназивається арифметичне значення квадратного кореня її дисперсії:

.

Приклад 5.Обчислити дисперсії та середні квадратичні відхилення випадкових величин Xі Y, закони розподілу яких наведені у таблицях вище.

Рішення. Математичні очікування випадкових величин Xі YЯк було знайдено вище, дорівнюють нулю. Згідно з формулою дисперсії при Е(х)=Е(y)=0 отримуємо:

Тоді середні квадратичні відхилення випадкових величин Xі Yскладають

.

Таким чином, при однакових математичних очікуваннях дисперсія випадкової величини Xдуже мала, а випадкової величини Y- Значна. Це наслідок розбіжності у тому розподілі.

Приклад 6.У інвестора є 4 альтернативні проекти інвестицій. У таблиці узагальнено дані про очікуваний прибуток у цих проектах з відповідною ймовірністю.

Проект 1Проект 2Проект 3Проект 4
500, P=1 1000, P=0,5 500, P=0,5 500, P=0,5
0, P=0,5 1000, P=0,25 10500, P=0,25
0, P=0,25 9500, P=0,25

Знайти для кожної альтернативи математичне очікування, дисперсію та середнє квадратичне відхилення.

Рішення. Покажемо, як обчислюються ці величини для 3 альтернативи:

У таблиці узагальнено знайдені величини всім альтернатив.

У всіх альтернатив однакові математичні очікування. Це означає, що у довгостроковому періоді в усіх - однакові доходи. Стандартне відхилення можна інтерпретувати як одиницю виміру ризику - що більше, тим більше ризик інвестицій. Інвестор, який бажає великого ризику, вибере проект 1, оскільки він має найменше стандартне відхилення (0). Якщо ж інвестор віддає перевагу ризику та більшим доходам у короткий період, він вибере проект найбільшим стандартним відхиленням - проект 4.

Властивості дисперсії

Наведемо властивості дисперсії.

Властивість 1.Дисперсія постійної величини дорівнює нулю:

Властивість 2.Постійний множник можна виносити за знак дисперсії, зводячи його у квадрат:

.

Властивість 3.Дисперсія випадкової величини дорівнює математичному очікуванню квадрата цієї величини, з якого віднімається квадрат математичного очікування самої величини:

,

де .

Властивість 4.Дисперсія суми (різниці) випадкових величин дорівнює сумі (різниці) їх дисперсій:

Приклад 7.Відомо, що дискретна випадкова величина Xприймає лише два значення: −3 та 7. Крім того, відоме математичне очікування: E(X) = 4 . Знайти дисперсію дискретної випадкової величини.

Рішення. Позначимо через pймовірність, з якою випадкова величина набуває значення x1 = −3 . Тоді ймовірністю значення x2 = 7 буде 1 − p. Виведемо рівняння для математичного очікування:

E(X) = x 1 p + x 2 (1 − p) = −3p + 7(1 − p) = 4 ,

звідки отримуємо ймовірність: p= 0,3 та 1 − p = 0,7 .

Закон розподілу випадкової величини:

X −3 7
p 0,3 0,7

Дисперсію даної випадкової величини обчислимо за формулою з якості дисперсії 3:

D(X) = 2,7 + 34,3 − 16 = 21 .

Знайти математичне очікування випадкової величини самостійно, а потім переглянути рішення

Приклад 8.Дискретна випадкова величина Xнабуває лише два значення. Більше значень 3 вона приймає з ймовірністю 0,4. Крім того, відома дисперсія випадкової величини D(X) = 6 . Знайти математичне очікування випадкової величини.

Приклад 9.В урні 6 білих і 4 чорні кулі. З урни виймають 3 кулі. Число білих куль серед вийнятих куль є дискретною випадковою величиною X. Знайти математичне очікування та дисперсію цієї випадкової величини.

Рішення. Випадкова величина Xможе приймати значення 0, 1, 2, 3. Відповідні їм ймовірності можна обчислити за правилу множення ймовірностей. Закон розподілу випадкової величини:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Звідси математичне очікування цієї випадкової величини:

M(X) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсія даної випадкової величини:

D(X) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математичне очікування та дисперсія безперервної випадкової величини

Для безперервної випадкової величини механічна інтерпретація математичного очікування збереже той самий зміст: центр маси для одиничної маси, розподіленої безперервно на осі абсцис із щільністю f(x). На відміну від дискретної випадкової величини, яка має аргумент функції xiзмінюється стрибкоподібно, у безперервної випадкової величини аргумент змінюється безперервно. Але математичне очікування безперервної випадкової величини пов'язане з її середнім значенням.

Щоб знаходити математичне очікування та дисперсію безперервної випадкової величини, потрібно знаходити певні інтеграли . Якщо дана функція щільності безперервної випадкової величини, вона безпосередньо входить у подынтегральное вираз. Якщо дана функція розподілу ймовірностей, то, диференціюючи її, необхідно визначити функцію щільності.

Арифметичне середнє всіх можливих значень безперервної випадкової величини називається її математичним очікуванням, що позначається або .


Close