Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

На этом уроке мы начнём изучать неравенства и их свойства. Мы рассмотрим простейшие неравенства - линейные и методы решения систем и совокупностей неравенств.

Мы часто сравниваем те или иные объекты по их числовым характеристикам: товары по их ценам, людей по их росту или возрасту, смартфоны по их диагонали или результаты команд по количеству забитых мячей в матче.

Соотношения вида или называют неравенствами . Ведь в них записано, что числа не равны, а больше или меньше друг друга.

Чтобы сравнивать натуральные числа в десятичной записи, мы упорядочили цифры: , а дальше чаще всего использовали преимущества десятичной записи: начинали сравнивать цифры чисел с крайних левых разрядов до первого несоответствия.

Но этот способ не всегда удобен.

Проще всего сравнивать положительные числа, т.к. они обозначают количества. Действительно, если число можно эквивалентно представить в виде суммы числа с каким-то другим числом , то больше : .

Эквивалентная запись: .

Это определение можно расширить не только на положительные числа, но и на любые два числа: .

Число больше числа (записывается как или ), если число является положительным. Соответственно, если число отрицательно, то .

Например, сравним две дроби: и . Сразу так и не скажешь, какая из них больше. Поэтому обратимся к определению и рассмотрим разность :

Получили отрицательное число, значит, .

На числовой оси большее число всегда будет располагаться правее, меньшее - левее (Рис. 1).

Рис. 1. На числовой оси большее число располагается правее, меньшее - левее

Зачем нужны такие формальные определения? Одно дело - наше понимание, а другое - техника. Если сформулировать строгий алгоритм сравнения чисел, то его можно поручить компьютеру. В этом есть плюс - такой подход избавляет нас от выполнения рутинных операций. Но есть и минус - компьютер точно следует заданному алгоритму. Если компьютеру поставлена задача: поезд должен отправиться со станции в , то, даже если вы окажетесь на платформе в , на этот поезд вы уже не успеете. Поэтому алгоритмы, которые мы задаём компьютеру для выполнения различных вычислений или решения задач, должны быть очень точными и максимально формализованными.

Как и в случае равенств, с неравенствами можно совершать некоторые действия и получать эквивалентные неравенства.

Рассмотрим некоторые из них.

1. Если , то для любого числа . Т.е. можно прибавлять или вычитать одно и то же число к обеим частям неравенства.

У нас уже есть хороший образ - весы. Если одна из чашек весов перевешивала, то, сколько бы мы ни добавляли (или не забирали) к обеим чашам, эта ситуация не изменится (Рис. 2).

Рис. 2. Если чаши весов не уравновешены, то после добавления (убавления) к ним одинакового количества гирь они останутся в таком же неуравновешенном положении

Это действие можно сформулировать по-другому: можно переносить слагаемые из одной части неравенства в другую, изменяя их знак на противоположный: .

2. Если , то и для любого положительного . Т.е. обе части неравенства можно умножать или делить на положительное число и его знак не изменится.

Для понимания этого свойства можно опять воспользоваться аналогией с весами: если, к примеру, левая чаша перевешивала, то, если возьмём две левые чаши и две правые, перевес точно сохранится. Та же ситуация для , чаш и т.д. Даже если возьмём половины каждой из чаш, ситуация тоже не изменится (Рис. 3).

Рис. 3. Если чаши весов не уравновешены, то, после того как забрать половину каждой из них, они останутся в таком же неуравновешенном положении

Если же умножить или разделить обе части неравенства на отрицательное число, то знак неравенства изменится на противоположный. С аналогией для этой операции чуть сложнее - отрицательных количеств нет. Здесь поможет тот факт, что у отрицательных чисел всё наоборот (чем больше модуль числа, тем меньше само число): .

Для чисел разных знаков ещё легче: . Т.е., умножая на , мы должны изменить знак неравенства на противоположный.

Что касается умножения на отрицательное число , то можно выполнить эквивалентную операцию из двух частей: сначала умножить на противоположное положительное число - как мы уже знаем, знак неравенства не изменится: .

Подробнее о сложении и умножении

В первом свойстве мы записали: , но при этом сказали, что можно не только прибавлять, но и вычитать. Почему? Потому что вычитание числа - это то же самое, что и прибавление противоположного числа: . Именно поэтому мы говорим не только о сложении, но и о вычитании.

Аналогично и со вторым свойством: деление - это умножение на обратное число: . Поэтому во втором свойстве мы говорим не только об умножении на число, но и о делении.

3. Для положительных чисел и , если , то .

Это свойство мы хорошо знаем: если мы торт делим на человек, то, чем больше , тем меньше достанется каждому. Например: , поэтому (действительно, четвёртая часть торта явно меньше третьей части того же торта) (Рис. 4).

Рис. 4. Четвёртая часть торта меньше третьей части того же торта

4. Если и , то .

Продолжая аналогию с весами: если на одних весах левая чаша перевешивает правую и на других - такая же ситуация, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, снова получим, что левая чаша перевешивает (Рис. 5).

Рис. 5. Если левые чаши двух весов перевешивают правые, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, получится, что левая чаша перевешивает

5. Для положительных , если и , то .

Здесь аналогия чуть более сложная, но тоже ясная: если левая чаша тяжелее правой и мы возьмём больше левых чаш, чем правых, то точно получим более массивную чашу (Рис. 6).

Рис. 6. Если левая чаша тяжелее правой, то если взять больше левых чаш, чем правых, то получится более массивная чаша

Последние два свойства интуитивно понятны: сложив или умножив числа побольше, мы в результате получим большее число.

Большинство из этих свойств можно строго доказать, используя различные алгебраические аксиомы и определения, но мы не будем этого делать. Для нас процесс доказательства представляет не такой интерес, как непосредственно полученный результат, который мы будем использовать на практике.

До сих пор мы говорили о неравенствах как о способе записи результата сравнения двух чисел: или . Но неравенства можно использовать и для записи различной информации об ограничениях для того или иного объекта. В жизни мы часто используем такие ограничения для описания, например: Россия - это миллионы людей от Калининграда до Владивостока; в лифте можно перевозить не больше кг, а в пакет - класть не больше кг. Ограничения могут быть использованы и для классификации объектов. Например, в зависимости от возраста выделяют различные категории населения - дети, подростки, молодёжь и т.д.

Во всех рассмотренных примерах можно выделить общую идею: некоторая величина ограничена сверху или снизу (или с обеих сторон сразу). Если - грузоподъёмность лифта, а - допустимая масса товаров, которые можно класть в пакет, то описанную выше информацию можно записать так: , и т.д.

В рассмотренных примерах мы были немного неточны. Формулировка «не больше» подразумевает, что в лифте можно перевозить ровно кг, а в пакет можно положить ровно кг. Поэтому правильнее было записать так: или . Естественно, так писать неудобно, поэтому придумали специальный знак: , который читается как «меньше или равно». Такие неравенства называются нестрогими (соответственно, неравенства со знаками - строгими ). Их используют тогда, когда переменная может быть не только строго больше или меньше, но может и равняться граничному значению.

Решением неравенства называются все такие значения переменной, при подстановке которых полученное числовое неравенство будет верным. Рассмотрим, например, неравенство: . Числа - решения этого неравенства, т.к. неравенства являются верными. А вот числа и не являются решениями, поскольку числовые неравенства и не являются верными. Решить неравенство , значит, найти все значения переменных, при которых неравенство будет верным.

Вернемся к неравенству . Его решения можно эквивалентно описать так: все действительные числа, которые больше . Понятно, что таких чисел бесконечное множество, как же в таком случае записать ответ? Обратимся к числовой оси: все числа, большие , расположены справа от . Заштрихуем эту область, тем самым показывая, что это и будет ответ к нашему неравенству. Чтобы показать, что число не является решением, его заключают в пустой круг, или, по-другому, выкалывают точку (Рис. 7).

Рис. 7. На числовой оси показано, что число не является решением (выколотая точка)

Если же неравенство нестрогое и выбранная точка является решением, то её заключают в закрашенный круг.

Рис. 8. На числовой оси показано, что число является решением (закрашенная точка)

Итоговый ответ удобно записывать с помощью промежутков . Промежуток записывается по следующим правилам:

Знак обозначает бесконечность, т.е. показывает, что число может принимать сколь угодно большое () или сколь угодно малое значение ().

Ответ к неравенству мы можем записать так: или просто: . Это означает, что неизвестная принадлежит указанному промежутку, т.е. может принимать любые значения из этого промежутка.

Если обе скобки промежутка круглые, как в нашем примере, то такой промежуток ещё называют интервалом .

Обычно решением неравенства является промежуток, но возможны и другие варианты, например, решением может быть множество, состоящее из одного или несколько чисел. Например, неравенство имеет только одно решение . Ведь при любых других значениях выражение будет положительным, а значит, соответствующее числовое неравенство выполняться не будет.

Неравенство может и не иметь решений. В этом случае ответ записывают как («Переменная принадлежит пустому множеству»). В том, что решением неравенства может быть пустое множество, нет ничего необычного. Ведь в реальной жизни ограничения также могут привести к тому, что не найдется ни одного элемента, удовлетворяющего требованиям. Например, людей с ростом выше метров и при этом весом до кг - точно нет. Множество таких людей не содержит ни одного элемента, или, как говорят, это пустое множество.

Неравенства могут использоваться не только для записи известной информации, но и, как математические модели, для решения различных задач. Пусть у вас есть рублей. Сколько мороженых по рублей вы можете купить на эти деньги?

Другой пример. У нас есть рублей и нам нужно купить мороженое на друзей. По какой цене мы можем выбрать мороженое для покупки?

В жизни каждый из нас умеет решать такие простые задачи в уме, но задача математики - разработать удобный инструмент, с помощью которого можно решить не одну конкретную задачу, а целый класс разных задач независимо от того, о чём идёт речь - количество порций мороженого, машин для перевозки грузов или рулонов обоев для комнаты.

Перепишем условие первой задачи про мороженое на математическом языке: одна порция стоит рублей, количество порций, которое мы можем купить, нам неизвестно, обозначим как . Тогда общая стоимость нашей покупки: рублей. И, по условию, эта сумма не должна превышать рублей. Избавляясь от наименований, получаем математическую модель: .

Аналогично для второй задачи (где - стоимость порции мороженого): . Конструкции , - простейшие примеры неравенств с переменной, или линейных неравенств.

Линейными называются неравенства вида , а также те, которые можно привести к такому виду эквивалентными преобразованиями. Например: ; ; .

Ничего нового в таком определении для нас нет: отличие линейных неравенств от линейных уравнений только в замене знака равенства на знак неравенства. Название также связано с линейной функцией , которая фигурирует в левой части неравенства (Рис. 9).

Рис. 9. График линейной функции

Соответственно, алгоритм решения линейных неравенств почти такой же, как и алгоритм решения линейных уравнений:

Разберём несколько примеров.

Пример 1. Решить линейное неравенство: .

Решение

Перенесём слагаемое с неизвестной из правой части неравенства в левую: .

Делим обе части на отрицательное число , знак неравенства меняется на противоположный: . Сделаем рисунок на оси (Рис. 10).

Рис. 10. Иллюстрация к примеру 1

Левого края у промежутка нет, поэтому пишем . Левый край промежутка , неравенство строгое, поэтому запишем с круглой скобкой. Получаем интервал: .

Пример 2. Решить линейное неравенство:

Решение

Раскроем скобки в левой и правой частях неравенства: .

Приведём подобные слагаемые: .

Сделаем рисунок на оси (Рис. 11).

Рис. 11. Иллюстрация к примеру 2

Получаем промежуток: .

Что делать, если после приведения подобных слагаемых пропала неизвестная

Пример 1. Решить линейное неравенство: .

Решение

Раскроем скобки: .

Перенесём в левую часть все слагаемые с переменной, а в правую - без переменной:

Приведём подобные слагаемые: .

Получаем: .

Неизвестной нет, что же делать? На самом деле снова ничего нового. Вспомните, что мы делали в таких случаях для линейных уравнений: если получилось верное равенство, то решение - любое действительное число, если получилось неверное равенство, то решений у уравнения - нет.

Так же поступаем и здесь. Если получившееся числовое неравенство верно, значит, неизвестная может принимать любые значения: ( - множество всех действительных чисел). Но числовой оси это можно изобразить следующим образом (Рис. 1):

Рис. 1. Неизвестная может принимать любые значения

А с помощью интервала записать так: .

Если же числовое неравенство получилось неверным, то исходное неравенство не имеет решений: .

В нашем случае неравенство неверно, поэтому ответ: .

В различных задачах нам может встретиться не одно, а сразу несколько условий или ограничений. Например, чтобы решить транспортную задачу, нужно учесть количество машин, время в пути, грузоподъёмность и прочее. Каждое из условий на математическом языке будет описываться своим неравенством. При этом возможны два варианта:

1. Все условия выполняются одновременно. Такой случай описывается системой неравенств . При записи они объединяются фигурной скобкой (можно прочитать её как союз И): .

2. Должно выполняться хотя бы одно из условий. Это описывается совокупностью неравенств (можно прочитать её как союз ИЛИ): .

Системы и совокупности неравенств могут содержать несколько переменных, их количество и сложность могут быть любыми. Но мы будем подробно изучать самый простой случай: системы и совокупности неравенств с одной переменной.

Как их решать? Нужно по отдельности решить каждое из неравенств, а дальше всё зависит от того, система перед нами или совокупность. Если это система , должны выполняться все условия. Если Шерлок Холмс определил, что преступник был блондином и имел размер ноги, то среди подозреваемых должны остаться только блондины с размером ноги. Т.е. нам подойдут только те значения, которые соответствуют и одному, и второму, и, если есть, третьему, и другим условиям. Они находятся на пересечении всех полученных множеств. Если использовать числовую ось, то - на пересечении всех заштрихованных частей оси (Рис. 12).

Рис. 12. Решение системы - пересечение всех заштрихованных частей оси

Если это совокупность , то нам подойдут все значения, которые являются решениями хотя бы одного неравенства. Если Шерлок Холмс определил, что преступником мог быть или блондин, или человек с размером ноги, то среди подозреваемых должны оказаться как все блондины (независимо от размера обуви), так и все люди с размером ноги (независимо от цвета волос). Т.е. решением совокупности неравенств будет объединение множеств их решений. Если использовать числовую ось, то - объединение всех заштрихованных частей оси (Рис. 13).

Рис. 13. Решение совокупности - объединение всех заштрихованных частей оси

Подробнее о пересечении и объединении вы можете узнать ниже.

Пересечение и объединение множеств

Термины «пересечение» и «объединение» относятся к понятию множества. Множество - набор элементов, отвечающим некоторым критериям. Примеров множеств вы можете придумать сколько угодно: множество одноклассников, множество футболистов сборной России, множество машин в соседнем дворе и т.д.

Вы уже знакомы с числовыми множествами: множеством натуральных чисел , целых , рациональных , действительных чисел . Есть и пустые множества , они не содержат элементов. Решения неравенств - это тоже множества чисел.

Пересечением двух множеств и называется такое множество , которое содержит все элементы, принадлежащие одновременно и множеству , и множеству (Рис. 1).

Рис. 1. Пересечение множеств и

Например, пересечение множества всех женщин и множества президентов всех стран будут все женщины-президенты.

Объединением двух множеств и называется такое множество , которое содержит все элементы, которые принадлежат хотя бы одному из множеств или (Рис. 2).

Рис. 2. Объединение множеств и

Например, объединением множества футболистов «Зенита» в сборной России и футболистов «Спартака» в сборной России будут все футболисты «Зенита» и «Спартака», которые играют за сборную. Кстати, пересечение этих множеств будет пустым множеством (игрок не может одновременно играть за два клуба).

С объединением и пересечением числовых множеств вы уже сталкивались, когда искали НОК и НОД двух чисел. Если и - это множества, состоящие из простых множителей, полученных при разложении чисел, то НОД получается из пересечения этих множеств, а НОК - из объединения. Пример:

Пример 3. Решить систему неравенств: .

Решение

Решим по отдельности неравенства. В первом неравенстве перенесём слагаемое без переменной в правую часть с противоположным знаком: .

Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Во втором неравенстве перенесём в левую часть слагаемое с переменной, а в правую - без переменной: . Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Изобразим решения отдельных неравенств на числовой оси. По условию, у нас система неравенств, поэтому ищем пересечение решений (Рис. 14).

Рис. 14. Иллюстрация к примеру 3

По сути первая часть решения систем и совокупностей неравенств с одной переменной сводится к решению отдельных линейных неравенств. В этом вы можете попрактиковаться самостоятельно (например, с помощью наших тестов и тренажёров), а мы подробнее остановимся на нахождении объединений и пересечений множеств решений.

Пример 4. Пусть было получено следующее решение отдельных уравнений системы:

Решение

Заштрихуем на оси область, соответствующую решению первого уравнения (Рис. 15); решение второго уравнения - пустое множество, ему на оси ничего не соответствует.

Рис. 15. Иллюстрация к примеру 4

Это система, поэтому нужно искать пересечение решений. Но их нет. Значит, ответом к системе будем также пустое множество: .

Пример 5. Еще пример: .

Решение

Отличие в том, что это уже совокупность неравенств. Поэтому нужно выбрать область на оси, которая соответствует решению хотя бы одного из уравнений. Получим ответ: .

Проще можно сказать, что это такие неравенства, в которых есть переменная только в первой степени, и она не находится в знаменателе дроби.

Примеры:

\(\frac{3y-4}{5}\) \(\leq1\)

\(5(x-1)-2x>3x-8\)

Примеры не линейных неравенств:

\(3>-2\) – здесь нет переменных, только лишь числа, значит это числовое неравенство
\(\frac{-14}{(y-3)^{2}-5}\) \(\leq0\) – есть переменная в знаменателе, это
\(5(x-1)-2x>3x^{2}-8\) - есть переменная во второй степени, это

Решение линейных неравенств

Решением неравенства будет любое число, подстановка которого вместо переменной сделает неравенство верным. Решить неравенство – значит найти все такие числа.

Например, для неравенства \(x-2>0\) число \(5\) будет решением, т.к. при подстановке пятерки вместо икса мы получим верное числовое: \(3>0\). А вот число \(1\) решением не будет, так как при подстановке получится неверное числовое неравенство:\(-1>0\) . Но решением неравенства будут не только пятерка, но и \(4\), \(7\), \(15\), \(42\), \(726\) и еще бесконечное множество чисел: любое число, больше двойки.


Поэтому линейные неравенства не решают перебором и подстановкой значений. Вместо этого их с помощью приводят к одному из видов:

\(xc\), \(x\leqс\), \(x\geqс\), где \(с\) - любое число

После чего ответ отмечается на числовой оси и записывается в виде (также называемого интервалом).

Вообще, если вы умеете решать , то и линейные неравенства вам под силу, потому что процесс решения очень схож. Есть лишь одно важное дополнение:

Пример. Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

Ответ: \(x\in(-1;\infty)\)

Особый случай №1: решение неравенства – любое число

В линейных неравенствах возможна ситуация, когда ему в качестве решения пойдет абсолютно любое число – целое, дробное, отрицательное, положительное, ноль… Например, вот такое неравенство \(x+2>x\) будет верным при любом значении икса. Ну, а как же может быть иначе, ведь слева к иксу прибавили двойку, а справа – нет. Естественно, что слева будет получаться большее число, какой бы икс мы не взяли.

Пример. Решить неравенство \(3(2x-1)+5<6x+4\)
Решение:

Ответ: \(x\in(-\infty;\infty)\)

Особый случай №2: неравенство не имеет решений

Возможна и обратная ситуация, когда у линейного неравенства вообще нет решений, то есть никакой икс не сделает его верным. Например, \(x-2>x\) не будет верным никогда, ведь слева из икса вычитают двойку, а справа – нет. Значит, слева всегда будет меньше, а не больше.

Пример. Решить неравенство \(\frac{x-5}{2}\) \(>\) \(\frac{3x+2}{6}\) \(-1\)
Решение:

\(\frac{x-5}{2}\) \(>\) \(\frac{3x+2}{6}\) \(-1\)

Нам мешают знаменатели. Сразу же избавляемся от них, умножая всё неравенство на общий знаменатель всех , то есть – на 6

\(6\cdot\)\(\frac{x-5}{2}\) \(>\)\(6\cdot\)\((\frac{3x+2}{6}\) \(-1\)\()\)

Раскроем скобки

\(6\cdot\)\(\frac{x-5}{2}\) \(>\)\(6\cdot\)\(\frac{3x+2}{6}\) \(-6\)

Сократим то, что можно сократить

\(3\cdot(x-5)>3x+2-6\)

Слева раскроем скобку, а справа приведем подобные слагаемые

\(3x-15>3x-4\)


Перенесем \(3x\) влево, а \(-15\) вправо, меняя знаки

\(3x-3x>-4+15\)


Вновь приводим подобные слагаемые


Получили неверное числовое неравенство. И оно будет неверным при любом иксе, ведь он никак не влияет на получившееся неравенство. Значит, любое значение икса решением не будет.

Ответ: \(x\in\varnothing\)

  • Свойство 1. Если a > b и b > c, то a > c (Пример: 8 > 4 и 4 > 3 => 8 > 3)
  • Свойство 2. Если a > b, то a + const > b + const. Const-произвольное число (Пример: x - 3 > 0 <=> x - 3 + 8 > 0 + 8)
  • Свойство 3. Если a > b и m > 0, то am > bm;

Если a > b и m < 0, то am < bm. m-произвольное число.

Смысл свойства 3 заключается в следующем:

  • если обе части неравенства умножить на одно и то же положительное число,то знак неравенства следует сохранить;
  • если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить(знак “<” на “>”, знак “>” на “<”);(для нестрогих неравенств)

Из свойства 3, в частности, следует, что, умножив обе части неравенства a > b на -1, получим: -a < -b.

  • Свойство 4. Если a > b и c > d, то a + c > b + d (Пример: 8 > 4 и 3 > 2 => 8 + 3 > 4 + 2)
  • Свойство 5. Если a,b,c,d -положительные числа и a > b, c > d то ac > bd (Пример: 8 > 4 и 3 > 2 => 8 * 3 > 4 * 2)

Линейные неравенства

Определение. Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство.

Рассмотрим, например, неравенство 2х + 5 < 7.

Нас интересуют такие числа х, при которых 2х + 5 < 7— верное числовое неравенство.

Давайте упростим наше неравенство.

1) Согласно свойству 2 к обеим частям неравенства прибавили одно и то же число “-5”, получили:

2х + 5 - 5 < 7 - 5.

Получили более простое неравенство.

2) На основании свойства 3 можно разделить обе его части на положительное число 2, полученное неравенство:

Что это значит? Это значит, что решением неравенства является любое число х, которое меньше 1. Таким образом, множеством решений данного неравенства является множество чисел x < 1 (или иначе в виде числовой прямой (-∞;1])

Свойства позволяют руководствоваться при решении неравенств следующими правилами:

  • Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства.
  • Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.
  • Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.

Применим эти правила для решения линейных неравенств, т.е. неравенств, сводящихся к виду

где а и b — любые числа, за одним исключением: а ≠ 0.

Если а = 0, то рассматриваем 2 случая:

1) Если b > 0, то x может быть любое число

2) Если b < 0, то решения нет

Пример 1:

Решить неравенство

Зх - 5 ≥ 7х - 15.

Решение.

Руководствуемся правилом 1 перенесем член 7х в левую часть неравенства, а член -5 — в правую часть неравенства, не забыв при этом изменить знаки и у члена 7х, и у члена -5. Тогда получим:

Зх - 7х ≥ -15 + 5

Согласно правилу 3 разделим обе части последнего неравенства на одно и то же отрицательное число -4, не забыв при этом сменить знак неравенства. Получим:

Это и есть решение заданного неравенства.

Как мы условились, для записи решения можно использовать обозначение соответствующего промежутка числовой прямой: (-∞; 2,5].

Ответ: (- ∞; 2,5].

Пример 2:

Решить неравенство

3x + 2 > 2(x + 3) + x

Решение.

3x + 2 > 2x + 6 + x

Руководствуясь правилом 1

3x - 2x - x > 6 - 2

Получаем противоречие.

Решения нет.

Пример 4:

Решить неравенство

2(x - 1) + 3 > 2x - 5

Решение.

Раскроем скобки во второй части неравенства:

2x - 2 + 3 > 2x - 5

Руководствуясь правилом 1 , перенесем члены "с иксом" в левую часть неравенства, а "без икса" в правую:

2x - 2x > 2 - 5 - 3

Получаем верное неравенство.

В данном случае можно взять любое число x, так как от него не зависит решение.

Ответом является вся числовая прямая.

В заключение заметим, что, используя свойства числовых неравенств и правила, мы в этом параграфе учились решать не любое неравенство с переменной, а только такое, которое после ряда простейших преобразований (типа тех, что были выполнены в примерах из этого параграфа) принимает вид ax > b, такие неравенства называются линейными . Далее мы изучим методы для решения более сложных неравенств.

Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

1. Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение

.

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

. .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

, это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х=

. Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение

.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то

.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

во второе уравнение системы, получим ,

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

2х-2у-2z=-12

3х-3у-3z=-18

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

х+у+z=6

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.


Close