Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

Как устроено и действует электрическое поле

По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:

  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях. Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие. Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластиковой расчески.

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Свойства поля

Для характеристики электрического поля применяется 3 показателя:

  • Потенциал.
  • Напряженность.
  • Напряжение.
Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина. В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать. Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт. Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию. Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер. Уже имеется эффективная реализация технологии вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется. Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная , действующая на основе схемы . Помимо ряда функций, она может реагировать на электрическое поле. Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию. Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Действие одних заряженных тел на другие заряженные тела осуществляется без их прямого контакта, посредством электрического поля.

Электрическое поле материально . Оно существует независимо от нас и наших знаний о нем.

Электрическое поле создается электрическими зарядами и обнаруживается при помощи электрических зарядов по действию на них определенной силы.

Электрическое поле распространяется с конечной скоростью 300000 км/с в вакууме.

Так как одним из основных свойств электрического поля является его действие на заряженные частицы с определенной силой, то для введения количественных характеристик поля необходимо в исследуемую точку пространства поместить небольшое тело с зарядом q (пробный заряд). На это тело со стороны поля будет действовать сила

Если изменить величину пробного заряда, например, в два раза, в два раза изменится и сила, действующая на него.

При изменении величины пробного заряда в n раз, в n раз изменяется и сила, действующая на заряд.

Отношение же силы, действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда, есть величина постоянная и не зависящая ни от этой силы, ни от величины заряда, ни от того, есть ли вообще в исследуемой точке поля какой-либо заряд. Это отношение обозначается буквой и принимается за силовую характеристику электрического поля. Соответствующая физическая величина называется напряженностью электрического поля .

Напряженность показывает, какая сила действует со стороны электрического поля на единичный заряд, помещенный в данную точку поля.

Чтобы найти единицу напряженности, надо в определяющее уравнение напряженности подставить единицы силы – 1 Н и заряда – 1 Кл. Получаем: [ E ] = 1 Н / 1 Кл = 1 Н/Кл.

Для наглядности электрические поля на чертежах изображаются с помощью силовых линий.

Электрическое поле может совершать работу по перемещению заряда из одной точки в другую. Следовательно, заряд, помещенный в заданную точку поля, обладает запасом потенциальной энергии .

Энергетические характеристики поля можно ввести аналогично введению силовой характеристики.

При изменении величины пробного заряда, меняется не только сила, действующая на него, но и потенциальная энергия этого заряда. Отношение же энергии пробного заряда, находящегося в данной точке поля, к величине этого заряда, является величиной постоянной и не зависящей ни от энергии, ни от заряда.

Чтобы получить единицу потенциала, надо в определяющее уравнение потенциала подставить единицы энергии – 1 Дж и заряда – 1 Кл. Получаем: [φ] = 1 Дж / 1 Кл = 1 В.

Эта единица имеет собственное наименование 1 вольт.

Потенциал поля точечного заряда прямо пропорционален величине заряда, создающего поле и обратно пропорционален расстоянию от заряда до данной точки поля:

Электрические поля на чертежах можно изображать и с помощью поверхностей равного потенциала, называемых эквипотенциальными поверхностями .

При перемещении электрического заряда из точки с одним потенциалом в точку с другим потенциалом совершается работа.

Физическая величина, равная отношению работы по перемещению заряда из одной точки поля в другую, к величине этого заряда, называется электрическим напряжением :

Напряжение показывает, чему равна работа, совершаемая электрическим полем при перемещении заряда в 1 Кл из одной точки поля в другую.

Единицей напряжения, так же как и потенциала, является 1 В.

Напряжение между двумя точками поля, расположенными на расстоянии d друг от друга, связано с напряженностью поля:

В однородном электрическом поле работа по перемещению заряда из одной точки поля в другую не зависит от формы траектории и определяется только величиной заряда и разностью потенциалов точек поля.

Электромагнитными полями пронизано все окружающее пространство.

Существуют естественные и техногенные источники электромагнитных полей.

Естественные источники электромагнитного поля:

  • атмосферное электричество;
  • радиоизлучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • электрическое и магнитное поля Земли.

Источниками техногенных электромагнитных полей являются различная передающая аппаратура, коммутаторы, разделительные высокочастотные фильтры, антенные системы, промышленные установки, снабженные высокочастотными (ВЧ), ультравысокочастотными (УВЧ) и сверхвысокочастотными (СВЧ) генераторами.

Источники электромагнитных полей на производстве

К источникам ЭМП на производстве относятся две большие группы источников:

Опасное воздействие на работающих могут оказывать:

  • ЭМП радиочастот (60 кГц — 300 ГГц),
  • электрические и магнитные поля промышленной частоты (50 Гц);
  • электростатические поля.

Источниками волн радиочастотного диапазона являются прежде всего станции радио- и телевещания. Классификация радиочастот дана в табл. 1. Эффект радиоволн во многом зависит от особенностей их распространения. На него влияют характер рельефа и покрова поверхности Земли, крупные предметы и строения, расположенные на пути, и т.п. Лесные массивы и неровности рельефа поглощают и рассеивают радиоволны.

Таблица 1. Радиочастотный диапазон

Электростатические поля создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов). В промышленности электростатические поля широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

Источники электрических полей

Любое электромагнитное явление, рассматриваемое в целом, характеризуется двумя сторонами — электрической и магнитной, между которыми существует тесная связь. Электромагнитное поле также имеет всегда две взаимосвязанные стороны — электрическое поле и магнитное поле.

Источником электрических полей промышленной частоты являются токоведущие части действующих электроустановок (линии электропередачи, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсаторного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем, что выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, болях в области сердца, изменении артериального давления и пульса.

Для электрического поля промышленной частоты в соответствии с ГОСТ 12.1.002-84 предельно допустимый уровень напряженности электрического поля, пребывание в котором не допускается без применения специальных средств защиты в течение всего рабочего дня, равен 5 кВ/м. В интервале свыше 5 кВ/м до 20 кВ/м включительно допустимое время пребывания Т (ч) определяется по формуле Т = 50/Е — 2, где Е — напряженность воздействующего поля в контролируемой зоне, кВ/м. При напряженности поля свыше 20 кВ/м до 25 кВ/м время пребывания персонала в поле не должно превышать 10 мин. Предельно допустимое значение напряженности электрического поля устанавливается равным 25 кВ/м.

При необходимости определения предельно допустимой напряженности электрического поля при заданном времени пребывания в нем уровень напряженности в кВ/м вычисляется по формуле Е — 50/(Т + 2), где Т — время пребывания в электрическом поле, ч.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства — составная часть электрической установки, предназначенная для защиты персонала в открытых распределительных устройствах и на воздушных линиях электропередачи (рис. 1).

Экранирующее устройство необходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством работ. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегородок из металлических канатов. прутков, сеток. Экранирующие устройства должны иметь антикоррозионное покрытие и заземлены.

Рис. 1. Экранирующий навес над проходом в здание

Для защиты от воздействия электрического поля токов промышленной частоты используются также экранирующие костюмы, которые изготавливаются из специальной ткани с металлизированными нитями.

Источники электростатических полей

На предприятиях широко используют и получают вещества и материалы, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества.

Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электрические заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

Процесс возникновения и накопления электрических зарядов в веществах называют электризацией.

Явление статической электризации наблюдается в следующих основных случаях:

  • в потоке и при разбрызгивании жидкостей;
  • в струе газа или пара;
  • при соприкосновении и последующем удалении двух твердых
  • разнородных тел (контактная электризация).

Разряд статического электричества возникает в том случае, когда напряженность электростатического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха пробивное напряжение составляет 30 кВ/см.

У людей, работающих в зоне воздействия электростатического поля, отмечаются разнообразные расстройства: раздражительность, головная боль, нарушение сна, снижение аппетита и др.

Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (ГН 1757-77).

Эти нормативные правовые акты распространяются на электростатические поля, создаваемые при эксплуатации электроустановок высокого напряжения постоянного тока и электризации диэлектрических материалов, и устанавливают допустимые уровни напряженности электростатических полей на рабочих местах персонала, а также общие требования к проведению контроля и средствам защиты.

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей — 60 кВ/м в течение 1 ч.

При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется.

В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты зависит от конкретного уровня напряженности на рабочем месте.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия. Основные меры защиты:

  • предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций, на которых могут появиться заряды (аппараты, резервуары, трубопроводы, транспортеры, сливоналивные устройства, эстакады и т.п.);
  • уменьшение электрического сопротивления перерабатываемых веществ;
  • применение нейтрализаторов статического электричества, создающих вблизи наэлектризованных поверхностей положительные и отрицательные ионы. Ионы, несущие заряд, противоположный заряду поверхности, притягиваются к ней, и нейтрализуют заряд. По принципу действия нейтрализаторы разделяют на следующие типы: коронного разряда (индукционные и высоковольтные), радиоизотопные , действие которых основано на ионизации воздуха альфа-излучением плутония-239 и бета-излучением прометия-147, аэродинамические , представляющие собой камеру-расширитель, в которой с помощью ионизирующего излучения или коронного разряда генерируются ионы, которые затем воздушным потоком подаются к месту образования зарядов статического электричества;
  • снижение интенсивности зарядов статического электричества. Достигается соответствующим подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения, очисткой горючих газов и жидкостей от примесей;
  • отвод зарядов статического электричества, накапливающихся на людях. Достигается обеспечением работающих токопроводящей обувью и антистатическими халатами, устройством электропроводящих полов или заземленных зон, помостов и рабочих площадок. заземлением ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов.

Источники магнитного поля

Магнитные поля (МП) промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Чем больше сила тока, тем выше интенсивность магнитного поля.

Магнитные поля могут быть постоянными, импульсными, инфранизкочастотными (с частотой до 50 Гц), переменными. Действие МП может быть непрерывным и прерывистым.

Степень воздействия МП зависит от максимальной напряженности его в рабочем пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения рабочего места по отношению к МП и режима труда. Каких-либо субъективных воздействий постоянные МП не вызывают. При действии переменных МП наблюдаются характерные зрительные ощущения, так называемые фосфены, которые исчезают в момент прекращения воздействия.

При постоянной работе в условиях воздействия МП, превышающих предельно допустимые уровни, развиваются нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения состава крови. При преимущественно локапьном воздействии могут возникать вегетативные и трофические нарушения, как правило, в области тела, находящегося под непосредственным воздействием МП (чаще всего рук). Они проявляются ощущением зуда, бледностью или синюшностыо кожных покровов, отечностью и уплотнением кожи, в некоторых случаях развивается гиперкератоз (ороговелость).

Напряженность МП на рабочем месте не должна превышать 8 кА/м. Напряженность МП линии электропередачи напряжением до 750 кВ обычно не превышает 20-25 А/м, что не представляет опасности для человека.

Источники электромагнитного излучения

Источниками электромагнитных излучений в широком диапазоне частот (сверх- и ифранизкочастотном, радиочастотном, инфракрасном, видимом, ультрафиолетовом, рентгеновском — табл. 2) являются мощные радиостанции, антенны, генераторы сверхвысоких частот, установки индукционного и диэлектрического нагрева, радары, лазеры, измерительные и контролирующие устройства, исследовательские установки, медицинские высокочастотные приборы и устройства, персональные электронно-вычислительные машины (ПЭВМ), видеодисплейные терминалы на электронно-лучевых трубках, используемые как в промышленности, научных исследованиях, так и в быту.

Источниками повышенной опасности с точки зрения электромагнитных излучений являются также микроволновые печи, телевизоры, мобильные и радиотелефоны.

Таблица 2. Спектр электромагнитных излучений

Низкочастотные излучения

Источниками низкочастотных излучений являются системы производства. передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропередачи), электросети жилых и административных зданий, транспорт, работающий на электроприводе, и его инфраструктура.

При длительном воздействии низкочастотного излучения могут появиться головные боли, изменение артериального давления, развиваться утомление, наблюдаться выпадение волос, ломкость ногтей, снижение массы тела, стойкое снижение работоспособности.

Для защиты от низкочастотного излучения экранируют либо источники излучения (рис. 2), либо зоны, где может находиться человек.

Рис. 2. Экранирование: а — индуктора; б — конденсатора

Источники радиочастотного излучения

Источником ЭМП радиочастот являются:

  • в диапазоне 60 кГц — 3 МГц — неэкранированные элементы оборудования для индукционной обработки металла (закачка, отжиг, плавка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радиосвязи и радиовещании;
  • в диапазоне 3 МГц — 300 МГц — неэкранированные элементы оборудования и приборов, применяемых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлектриков;
  • в диапазоне 300 МГц — 300 ГГц — неэкранированные элементы оборудования и приборов, применяемых в радиолокации, радиоастрономии, радиоспектроскопии, физиотерапии и т.п. Длительное воздействие радиоволн на различные системы организма человека вызывают разные последствия.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения в ЦНС и сердечно-сосудистой системе человека. Субъективные жалобы — частая головная боль, сонливость или бессонница, утомляемость, слабость, повышенная потливость, снижение памяти, рассеянность, головокружение, потемнение в глазах, беспричинное чувство тревоги, страха и др.

Влияние электромагнитного поля средневолнового диапазона при длительном воздействии на проявляется в возбудительных процессах, нарушении положительных рефлексов. Отмечают изменения в крови, вплоть до лейкоцитоза. Установлены нарушение функции печени, дистрофические изменения в головном мозге, внутренних органах и половой системе.

Электромагнитное поле коротковолнового диапазона провоцирует изменения в коре надпочечников, сердечно-сосудистой системе, биоэлектрических процессах коры головного мозга.

ЭМП УКВ диапазона вызывает функциональные изменения в нервной, сердечно-сосудистой, эндокринной и других системах организма.

Степень опасности влияния на человека СВЧ-излучения зависит от мощности источника электромагнитных излучений, режима работы излучателей, конструктивных особенностей излучающего устройства, параметров ЭМП, плотности потока энергии, напряженности поля, времени воздействия, размера облучаемой поверхности, индивидуальных свойств человека, расположения рабочих мест и эффективности защитных мероприятий.

Различают тепловое и биологическое воздействие СВЧ-излучения.

Тепловое воздействие является следствием поглощения энергии ЭМП СВЧ-излучения. Чем выше напряженность поля и больше время воздействия, тем сильнее проявляется тепловое воздействие. При плотности потока энергии W- 10 Вт/м 2 организм не справляется с отводом теплоты, температура тела повышается и начинаются необратимые процессы.

Биологическое (специфическое) воздействие проявляется в ослаблении биологической активности белковых структур, нарушении сердечно-сосудистой системы и обмена веществ. Это воздействие проявляется при интенсивности ЭМП менее теплового порога, который равен 10 Вт/м 2 .

Воздействие ЭМП СВЧ-излучения особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте) и ожогам роговицы.

Для обеспечения безопасности работе источниками электромагнитных волн производится систематический контроль фактических нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напряженности электрического и магнитного поля, а также измерением плотности потока энергии.

Защита персонала от воздействия радиоволн применяется при всех видах работ, если условия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами:

  • согласованные нагрузки и поглотители мощности, снижающие напряженность и плотность поля потока энергии электромагнитных волн;
  • экранирование рабочего места и источника излучения;
  • рациональное размещение оборудования в рабочем помещении;
  • подбор рациональных режимов работы оборудования и режима труда персонала.

Наиболее эффективно использование согласованных нагрузок и поглотителей мощности (эквивалентов антенн) при изготовлении, настройке и проверке отдельных блоков и комплексов аппаратуры.

Эффективным средством защиты от воздействия электромагнитных излучений является экранирование источников излучения и рабочего места с помощью экранов, поглощающих или отражающих электромагнитную энергию. Выбор конструкции экранов зависит от характера технологического процесса, мощности источника, диапазона волн.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, например металлы (в виде сплошных стенок) или хлопчатобумажные ткани с металлической основой. Сплошные металлические экраны наиболее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. Поглощающие экраны изготавливаются в виде прессованных листов резины специального состава с коническими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной карбонильным железом, с впрессованной металлической сеткой. Эти материалы приклеиваются на каркас или на поверхность излучающего оборудования.

Важное профилактическое мероприятие по защите от электромагнитного облучения — выполнение требований для размещения оборудования и для создания помещений, в которых находятся источники электромагнитного излучения.

Защита персонала от переоблучения может быть достигнута за счет размещения генераторов ВЧ, УВЧ и СВЧ, а также радиопередатчиков в специально предназначенных помещениях.

Экраны источников излучения и рабочих мест блокируются с отключающими устройствами, что позволяет исключить работу излучающего оборудования при открытом экране.

Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей радиочастот изложены в ГОСТ 12.1.006-84.

Постоянное электростатическое поле (ЭСП) - это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними

Статический ток - это совокупность явлений, связанных с возникновением и сохранением свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изолированных проводника.

Возникновение зарядов статического электричества происходит при деформации, дроблении веществ, относительном перемещении двух тел, находящихся в контакте, слоев жидкости и сыпучих материалов, при интенсивном п перемешивании, кристаллизации, а также вследствие инд.

ЭСП характеризуется напряженностью (Б). Напряженность. ЭСП - это отношение силы, действующей в поле на точечный электрический заряд, к величине этого заряда. Единицей измерения напряженности. ЭСП является вольт на метр (В / м мм).

ЭСП создается в энергетических установках и при электротехнических процессах зависимости от источника образования они могут существовать в виде собственного электростатического поля (поля неподвижных зарядов) или стац ционарного электрического поля (электрическое поле постоянного тока).

Где используются ЭСП?

ЭСП имеют широкое применение при електрогазоочищенни, электростатической сепарации материалов, электростатическом нанесении лакокрасочных и полимерных материалов и в других производственных процессах

В радиоэлектронной промышленности статический ток образуется при транспортировке, шлифовке, полировке радиотелевизионных приемников, в помещениях вычислительных центров, а также в других процессах где е используются диэлектрические материалы, являющиеся побочным и нежелательным производственных факторов.

ЭСП возникающие при обработке химического волокна, имеет высокие диэлектрические свойства. Уровень напряженности. ЭСП на прядильном и ткацком оборудовании достигает 20-60 кВ / м

В химической промышленности при производстве пластических материалов и изделий из них (шинный корд, линолеум и др.) образуются электростатические заряды и поля напряженностью 240-250 кВ / м

Как влияет ЭСП на организм человека?

Биологическое действие. ЭСП на организм человека определяет наибольшую чувствительность к электростатических полей нервной, сердечно-сосудистой, нейрогуморальной и других систем организма

У рабочих, работающих в зоне действия электрического поля, наблюдаются разнообразные жалобы на раздражительность, головная боль, нарушение сна, снижение аппетита и т др.

У людей, подпадающих под действие. ЭСП, характерна появление своеобразных"фобий", обусловленных страхом ожидания разряда. Склонность к"фобий"преимущественно сопровождается повышенной эмоциональной возбудимостью

Как осуществляется гигиеническое нормирование электростатических полей?

Напряженность электростатического поля нормируется стандартом. ГОСТ 121045-84"Электростатические поля. Допустимые уровни на рабочих местах и??требования к проведению контроля"

Приведенный стандарт распространяется на. ЭСП, возникающие при эксплуатации электрического оборудования высокого напряжения постоянного тока и электризации диэлектрических материалов. Настоящий стандарт устанавливает доп допустимых уровни напряженности электростатических полей на рабочих местах, а также общие требования к проведению контроля и средств защитыу.

Допустимые уровни напряженности. ЭСП устанавливаются в зависимости от времени пребывания на рабочих местах

Предельно допустимый уровень напряженности. ЭСП (Е, ра") принимается согласно стандарту 60 кВ / м в течение одного часа

Если напряженность электростатических полей до 20 кВ / м, время пребывания в. ЭСП не регламентируется

В диапазоне напряженности от 20 до 60 кВ / м, допустимое время пребывания работающих в. ЭСП без средств защиты (/, год) определяется по формуле:

где. Е ^ - фактическое значение напряженности. ЭСП, кВ / м

Для определения напряженности. ЭСП используются измеритель напряженности электростатического поля

Какие защитные средства от воздействия ЭСП?

Использование средств защиты работающих обязательно в тех случаях, когда фактические уровни напряженности. ЭСП на рабочих местах превышают 60 кВ / м

Для защиты от воздействия. ЭСП используют: экранирование источников поля рабочего места, нейтрализаторы статического сотрясения, ограничение времени работы и т др.

При выборе средств защиты от статического электричества должны быть учтены особенности технологических процессов, физико-химические свойства обрабатываемых материалов, микроклимат производственных помещений и т и др.. Приведенные факторы определяют дифференцированный подход при разработке защитных средствеів.

Уменьшение генерации электростатических зарядов или отвод их с наэлектризованных материалов достигается путем:

1) заземление металлических и электропроводных элементов технологического оборудования;

2) увеличение поверхностей и объемной проводимости диэлектриков;

3) установление нейтрализаторов статического электричества

Защитное заземление производится независимо от использования других методов защиты. Заземлению подлежат не только элементы технологического оборудования, но. И изолированные электропроводящие участки технологическо ного оборудования.

Достаточно эффективным средством защиты является увеличение влажности воздуха до 65-75%, если это возможно по условиям технологического процесса

Среди средств индивидуальной защиты используют антистатическое обувь, антистатические халаты, комбинезоны, заземлены браслеты для защиты рук и другие средства, которые могут обеспечивать электростатическое за аземлення тела человек.

Электростатическое поле электростати́ческое по́ле

электрическое поле неподвижных электрических зарядов.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

ЭЛЕКТРОСТАТИ́ЧЕСКОЕ ПО́ЛЕ, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.
Электростатическое поле характеризуется напряженностью электрического поля (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) Е, которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) , помещенный в данную точку поля. Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.
Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени. Стационарные электростатические поля создаются неподвижными электрическими зарядами.
Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора (см. КОНДЕНСАТОР (электрический)) вдали от краев его обкладок.
Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле - это потенциальное поле, энергетической характеристикой которого является электростатический потенциал (см. ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКИЙ) , связанным с вектором напряженности Е соотношением:
Е = -gradj.
Для графического изображения электростатического поля используют силовые линии (см. СИЛОВЫЕ ЛИНИИ) (линии напряженности) - воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.
Для электростатических полей соблюдается принцип суперпозиции (см. СУПЕРПОЗИЦИИ ПРИНЦИП) . Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.
Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд - заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).
Поле, создаваемое уединенным точечным зарядом q, является сферически симметричным. Модуль напряженности уединенного точечного заряда в вакууме с помощью закона Кулона (см. КУЛОНА ЗАКОН) можно представить в виде:
Е = q/4pe о r 2 .
Где e о - электрическая постоянная, = 8,85 . 10 -12 Ф/м.
Закон Кулона, установленный при помощи созданных им крутильных весов (см. Кулона весы (см. КУЛОНА ВЕСЫ) ), - один из основных законов, описывающих электростатическое поле. Он устанавливает зависимость между силой взаимодействия зарядов и расстоянием между ними: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Эту силу называют кулоновской, а поле - кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q (см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ) среды) меньше, чем в вакууме.
Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Электрическое поле можно характеризовать значением потока вектора напряженности электрического поля, который можно рассчитать в соответствии с теоремой Гаусса (см. ГАУССА ТЕОРЕМА) . Теорема Гаусса устанавливает связь между потоком напряженности электрического поля через замкнутую поверхность и зарядом внутри этой поверхности. Поток напряженности зависит от распределения поля по поверхности той или иной площади и пропорционален электрическому заряду внутри этой поверхности.
Если изолированный проводник поместить в электрическое поле, то на свободные заряды q в проводнике будет действовать сила. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, компенсирует полностью внешнее поле, т. е. установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль: во всех точках внутри проводника Е = 0, то есть поле отсутствует. Силовые линии электростатического поля вне проводника в непосредственной близости к его поверхности перпендикулярны поверхности. Если бы это было не так, то имелась бы составляющая напряженности поля, вдоль поверхности провод­ника и по поверхности протекал бы ток. Заряды располагаются только на поверхности проводника, при этом все точки поверхности проводника имеют одно и то же значение потенциала. Поверхность проводника является эквипотенциальной поверхностью (см. ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ) . Если в проводнике есть полость, то электрическое поле в ней также равно нулю; на этом основана электростатическая защита электрических приборов.
Если в электростатическое поле поместить диэлектрик, то в нем происходит процесс поляризации - процесс ориентации диполей (см. ДИПОЛЬ) или появление под воздействием электрического поля ориентированных по полю диполей. В однородном диэлектрике электростатическое поле вследствие поляризации (см. Поляризация диэлектриков) убывает в? раз.


Энциклопедический словарь . 2009 .

Смотреть что такое "электростатическое поле" в других словарях:

    электростатическое поле - Электрическое поле неподвижных заряженных тел при отсутствии в них электрических токов. [ГОСТ Р 52002 2003] электростатическое поле Электрическое поле неподвижных электрических зарядов. Принципы рассматриваемого поля используются при создании… … Справочник технического переводчика

    Электростатическое поле - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и объеме веществ, материалов, изделий. Источник … Словарь-справочник терминов нормативно-технической документации

    Электростатическое поле поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов). Электрическое поле представляет собой особый вид материи, связанный с электрическими… … Википедия

    Электрич. поле неподвижных электрич. зарядов, осуществляющее вз ствие между ними. Как и перем. электрич. поле, Э. п. характеризуется напряжённостью электрич. поля К отношением силы, действующей со стороны поля на заряд, к величине заряда. Силовые … Физическая энциклопедия

    Электрическое поле неподвижных электрических зарядов … Большой Энциклопедический словарь

    Электростатическое поле - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и объеме веществ, материалов, изделий... Источник: МСанПиН 001 96. Санитарные нормы допустимых уровней физических факторов … Официальная терминология

    электростатическое поле - elektrostatinis laukas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc.… …

    электростатическое поле - elektrostatinis laukas statusas T sritis Standartizacija ir metrologija apibrėžtis Nejudančių elektringųjų dalelių elektrinis laukas. atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    электростатическое поле - elektrostatinis laukas statusas T sritis fizika atitikmenys: angl. electrostatic field vok. elektrostatisches Feld, n rus. электростатическое поле, n pranc. champ électrostatique, m … Fizikos terminų žodynas

    Электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Как и переменное электрическое поле, Э. п. характеризуется напряжённостью электрического поля Е: отношением силы, действующей на заряд, к… … Большая советская энциклопедия

Книги

  • Новые идеи в физике. Вып. 3. Принцип относительности. 1912 , Боргман И.И. , Волновая теоргя св*та считаетъ явлеше св 1>та обуслов- леннымъ колебашями, распространяющимися въ вид* волнъ въ пространстве, окружающемъ св*тяпцяся т*ла; такъ какъ очень скоро* выяснилось,… Категория: Математика и естественные науки Серия: Издатель: ЁЁ Медиа ,

Close