ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Наше знакомство с многогранниками продолжается.

Вспомним, что многогранник называется правильным, если выполнены следующие условия:

1.многогранник выпуклый;

2. все его грани являются равными правильными многоугольниками;

3. в каждой его вершине сходится одинаковое число граней;

4. все его двугранные углы равны.

На прошлых занятиях вы узнали об единственности существования пяти видов правильных многогранников:

тетраэдра, октаэдра, икосаэдра, гексаэдра(куба) и додекаэдра.

Сегодня мы рассмотрим элементы симметрии изученных правильных многогранников.

Правильный тетраэдр не имеет центра симметрии.

Его осью симметрии является прямая, проходящая через середины противоположных рёбер.

Плоскостью симметрии является плоскость, проходящая через любое ребро перпендикулярно противоположному ребру.

Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб обладает одним центром симметрии- это точка пересечения его диагоналей.

Осями симметрии являются прямые проходящие через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани.

Куб имеет девять осей симметрии, которые проходят через центр симметрии.

Плоскость, проходящая через любые две оси симметрии, является плоскостью симметрии.

Куб имеет девять плоскостей симметрии.

Правильный октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии: три оси симметрии проходят через противоположные вершины, шесть - через середины ребер.

Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Правильный икосаэдр имеет 12 вершин. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии: Через первую пару противоположных вершин проходят пять плоскостей симметрии (каждая их них проходит через ребро, содержащее вершину, перпендикулярно противоположному углу).

Для третьей пары получим — 3 новых плоскости, а для четвертой — две плоскости и для пятой пары только одна новая плоскость.

Через шестую пару вершин не пройдет ни одной новой плоскости симметрии.

Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Поэтому через первую пару противоположных пятиугольников проходит 5 плоскостей, через вторую пару — 4, через третью — 3, четвертую — 2, пятую — 1.

Решим несколько заданий, применяя полученные знания.

Доказать, что в правильном тетраэдре отрезки, соединяющие центры его граней, равны.

Так как все грани правильного тетраэдра равны и любая из них может считаться основанием, а три другие- боковыми гранями, то достаточно будет доказать равенство отрезков ОМ и ON.

Доказательство:

1.Дополнительное построение: проведём прямую DN до пересечения со стороной АС, получим точку F;

проведём прямую DM до пересечения со стороной АВ, получим точку Е.

Затем соединим вершину А с точкой F;

вершину С с точкой Е.

2.Рассмотрим треугольники ДЕО и ДОФ они

прямоугольные, т.к. ДО высота тетраэдра, тогда они равны по гипотенузе и катету: ДО-общая, ДЕ=ДФ(высоты равных граней тетраэдра)).

Из равенства данных треугольников следует, что OE=OF, ME=NF(середины равных сторон),

угол DEO равен углу DFO.

3. из выше доказанного следует что треугольники ОЕМ и ОФН равны по двум сторонам и углу между ними (см пн. 2).

А из равенства этих треугольников следует, что ОМ = ON.

Что и требовалось доказать.

Существует ли четырёхугольная пирамида, у которой противоположные грани перпендикулярны к основанию?

Докажем, что такой пирамиды не существует методом от противного.

Доказательство:

1. Пусть ребро РА1 перпендикулярно основанию пирамиды и ребро РА2 так же перпендикулярно основанию.

2.Тогда по теореме(две прямые, перпендикулярные к третьей, параллельны), мы получим что ребро РА1 параллельно ребру РА2.

3.Но пирамида имеет общую точку для всех боковых рёбер(а значит и граней)- вершину пирамиды.

Мы получили противоречие, таким образом не существует четырёхугольной пирамиды, противоположные грани которой перпендикулярны к основанию.

Октаэдр – один из пяти правильных многогранников, имеющий 8 треугольных граней, 12 рёбер, 6 вершин. Каждая его вершина является вершиной четырёх треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

В природе, в науке, в жизни этот многогранник встречается довольно часто: он находит применение в объяснении структуры и форм Вселенной, в строении ДНК и нанотехнологиях, в создании игр-головоломок.

Но чаще всего он встречается, пожалуй, в первом – в природе. А именно, в строении кристаллов. Форму октаэдра имеют кристаллы алмаза, перовскита, оливина, флюорита, шпинели, алюминиево-калиевых квасцов, медного купороса и даже хлорида натрия и золота!


Многогранники также используются в живописи. Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера (1898-1972), голландского художника, родившегося в Леувардене. Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.

Рис. 7. Гравюра «Звезды» Эшера

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.


Заключение

В ходе данной работы было рассмотрено понятие правильных многогранников, мы узнали, что многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) все его двугранные равны; 4) в каждой его вершине сходится одинаковое число ребер.

Рассмотрев историю возникновения платоновых тел, мы узнали, что всего существуют пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Их названия из Древней Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник".

Использованная литература и источники позволили более глубоко рассмотреть данную тему.

Проанализировав подробнее икосаэдр и октаэдр, а также их применение в различных областях, мы увидели, что изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр среди кристаллических форм не встречается, но его можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе о том, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников.


Список литературы

1. Александров А. Д. и др. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик. – 3-е изд., перераб. - М.: Просвещение, 1992 – 464 с.

2. Атанасян Л.С и другие. Геометрия 10 - 11.- М.: Просвещение, 2003.

3. Василевский А.Б. Параллельные проекции.- Москва, 2012.

4. Волошинов А.В. Математика и искусство.- М.: Просвещение, 2002.

5. Гончар В. В. Модели многогранников. – М.: Аким, 1997. – 64 с.

6. Дитяткин В.Г. Леонардо да Винчи.- М.: Москва, 2002.

7. Евклид. Начала.- В 3 т. М.; Л.; 1948 – 1950.

8. Математика: Школьная энциклопедия / гл. ред. Никольский С. М. – М.: Научное изд. «Большая Российская энциклопедия», 1996

9. Пидоу Д. Геометрия и искусство. - Москва, 1999.


Close