Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения .

Как известно в биоэнергетике живых организмов имеют значение два основных момента:

  • а) химическая энергия запасается путём образования АТФ, сопряжённого с экзергоническими катаболическими реакциями окисления органических субстратов;
  • б) химическая энергия утилизируется путём расщепления АТФ, сопряжённого с эндергоническими реакциями анаболизма и другими процессами, требующими затраты энергии .

Встаёт вопрос, почему молекула АТФ соответствует своей центральной роли в биоэнергетике. Для его разрешения рассмотрим структуру АТФ Структура АТФ - (при рН 7,0 тетразаряд аниона) .

АТФ представляет собой термодинамически нестойкое соединение. Нестабильность АТФ определяется, во - первых, электростатическим отталкиванием в области кластера одноимённых отрицательных зарядов, что приводит к напряжению всей молекулы, однако сильнее всего связи - Р - О - Р, и во - вторых, конкретным резонансом. В соответствии с последним фактором существует конкуренция между атомами фосфора за неподелённые подвижные электроны атома кислорода, расположенного между ними, поскольку на каждом атоме фосфора имеется частичный положительный заряд в следствии значительного электронаицепторного влияния групп Р=О и Р - О-. Таким образом, возможность существования АТФ определяется наличием достаточного количества химической энергии в молекуле, позволяющей компенсировать эти физико - химические напряжения. В молекуле АТФ имеется две фосфоангидридных (пирофосфатных) связи, гидролиз которых сопровождается значительным уменьшением свободной энергии (при рН 7,0 и 37 о С).

АТФ+Н 2 О = АДФ + Н 3 РО 4 G0I = - 31,0 КДж/моль.

АДФ+Н 2 О = АМФ +Н 3 РО 4 G0I = - 31,9 КДж/моль.

Одной из центральных проблем биоэнергетики является биосинтез АТФ, который в живой природе происходит путём Фосфорилирование АДФ.

Фосфорилирование АДФ является эндергоническим процессом и требует источника энергии. Как отмечалось ранее, в природе преобладает два таких источника энергии - это солнечная энергия и химическая энергия восстановленных органических соединений. Зелёные растения и некоторые микроорганизмы способны трансформировать энергию, поглощённых квантов света в химическую энергию, которая расходуется на фосфорилирование АДФ в световой стадии фотосинтеза. Этот процесс регенерации АТФ получил название фотосинтетического фосфорилирования. Трансформация энергии окисления органических соединений в макроэнергетические связи АТФ в аэробных условиях происходит преимущественно путём окислительного фосфорилирования. Свободная энергия, необходимая для образования АТФ, генерируется в дыхательной окислительной цепи митаходрий.

Известен ещё один тип синтеза АТФ, получивший название субстратного фосфорилирования. В отличии от окислительного фосфорилирования, сопряжённого с переносом электронов, донором активированной фосфорильной группой (- РО3 Н2), необходимой для регенерации АТФ, являются интермедианты процессов гликолиза и цикла трикарбоновых кислот. Во всех этих случаях окислительные процессы приводят к образованию высокоэнергетических соединений: 1,3 - дифосфоглицерата (гликолиз), сукцинил - КоА (цикл трикарбоновых кислот), которые при участии соответствующих ферментов способны фолирировать АДФ и образовывать АТФ. Трансформация энергии на уровне субстрата является единственным путём синтеза АТФ в анаэробных организмах. Этот процесс синтеза АТФ позволяет поддерживать интенсивную работу скелетных мышц в периоды кислородного голодания. Следует помнить, что он является единственным путём синтеза АТФ в зрелых эритроцитах не имеющих митохондрий.

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, и которому присоединены два остатка фосфорной кислоты. Такой вещество называется аденозинтрифосфорной кислотой (АТФ). В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия, которая освобождается при отщеплении органического фосфорита:

АТФ= АДФ+Ф+Е,

где Ф - фермент, Е - освобождающая энергия. В этой реакции образуется аденозинфосфорная кислота (АДФ) - остаток молекулы АТФ и органический фосфат. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производство тепла, нервных импульсов, свечений (например, улюминисцентных бактерий), то есть для всех процессов жизнедеятельности .

АТФ - универсальный биологический аккумулятор энергии. Световая энергия, заключенная в потребляемой пище, запасается в молекулы АТФ.

Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20 - 30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счёт расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит - в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

  • · Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
  • · Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
  • · АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата - вторичного посредника передачи в клетку гормонального сигнала.

Также известна роль АТФ в качестве медиатора в синапсах .

Изучались изменения креатинфосфорной кислоты после убоя животного. Ход распада креатинфосфата после прекращения жизни животного можно наблюдать по кривой, представленной на рис. 24.
Полученные данные свидетельствуют о снижении количества фосфора креатинфосфорной кислоты приблизительно через 7 ч после убоя до 12% от первоначального уровня. Следовательно, большая часть креатинфосфата распадается еще до того момента, когда наблюдаются первые физически обнаруживаемые признаки окоченения. К этому моменту содержание креатинфосфата в мышцах не превышает 5% общего кислоторастворимого фосфора. Отсюда вывод: креатинфосфорная кислота, принимая участие в гликолитическом цикле, действует только как средство происходящего при этом ресинтеза АТФ и не может играть какой-либо другой роли в изменениях, связанных с послеубойным окоченением мышц.

Энгельгардтом и Любимовой были открыты ферментативные свойства миозина, вызывающего расщепление АТФ. По данным одного из авторов, имеет место следующий механизм этого процесса: при ферментативном распаде АТФ соединяется с миозином, в результате чего отщепляется третья частица фосфорной кислоты, а АДФ отделяется от миозина. Свободный миозин соединяется с новой молекулой АТФ или с актином.
Кроме того, указанные авторы установили, что АТФ в свою очередь влияет на механические свойства нитей миозина, значительно увеличивая их растяжимость. В этом отношении АТФ превышает по силе действия другие органические эфиры, содержащие пирофосфатные связи. Эти работы позволили по-новому подойти к рассмотрению вопросов о причинах послеубойного окоченения.
Эрдош показал, что процессы распада АТФ и увеличения степени жесткости мускулов кролика при развитии послеубойного окоченения протекают параллельно.
Принимая во внимание значение АТФ в процессах гликолиза при сокращении мускулов и в изменении механических свойств миозиновых нитей, Эрдош и Сент-Дьердьи пришли к выводу о-зависимости окоченения мускулов от недостатка АТФ. Аналогичные результаты другие авторы получили для мускулов различных видов животных: кроликов, крупного рогатого скота, лошадей, а также рыб.
Известно, что АТФ непрерывно синтезируется в процессе гликолиза в количестве 1,5 моля на каждый моль образующейся молочной кислоты. Однако этот синтез в той или другой степени уравновешивается расщеплением АТФ миозином. Поэтому пока имеются неизрасходованные резервы гликогена, не может произойти полного распада АТФ, и мускул не переходит в состояние окоченения.
Ниже показана взаимосвязь между растяжимостью мускула и содержанием АТФ по данным Марша. Наступление окоченения здесь выражается в единицах уменьшения растяжимости мускула (1/L) в % от максимального.

На рис. 25 показано, что изменения растяжимости мускулов зависят не только от концентрации АТФ, но и от наличия резервов гликогена в мышечной ткани. В группе животных с высокими запасами гликогена, где распад АТФ задерживается из-за большей продолжительности гликолитического цикла, изменения растяжимости протекают в более поздние сроки и при более низком содержании АТФ.

Бейт-Смит и Бендолл обнаружили начало быстрой фазы окоченения при 78-85% начального содержания АТФ в мускулах кролика, имеющих конечную величину pH 6,6, и окончание, когда ее количество достигает 20% первоначального уровня. Однако в мускулах, имеющих конечную величину pH 5,8, критический уровень концентрации АТФ в начале быстрой фазы составляет только 30% ее первоначального содержания.
Небольшие изменения концентрации АТФ в конце процесса гликолиза оказывают решающее влияние на растяжимость мускула и конечное падение скорости превращения АТФ соответствует в каждом отдельном случае наступлению окоченения. Это положение иллюстрируется кривыми рис. 25, построенными по данным Лоури, а также Бейт-Смита и Бендолла. Следовательно, окоченение должно зависеть не только от определенного уровня содержания АТФ, но и от скорости его снижения, связанной с ослаблением ресинтеза и зависящей от наличия резервов гликогена.
Оказалось также возможным определить коэффициенты Q10 для изменений величины растяжения и содержания АТФ и креатинфосфата в мускулах кролика в процессе его окоченения. Эти коэффициенты приведены в табл. 11.

Точное совпадение коэффициентов Q10 для процессов распада АТФ и изменения растяжимости мускулов является дополнительным доказательством наличия тесной взаимосвязи между ними.
На мясе крупного рогатого скота динамика легкогидрируемого P АТФ впервые прослежена в 1951 г. Представленные на рис. 26 экспериментальные данные об изменениях легкогидролизуемого фосфора мяса крупного рогатого скота говорят о том, что количество АТФ в парном мясе составляет в среднем 159,78 мг % (19,69 мг % легкогидролизуемого Р). В результате быстропроисходящего распада содержание легкогидролизуемого P к 12-му часу снижается до 9,1% первоначальной величины, т. е. за этот период времени разлагается свыше 90% АТФ, содержавшейся в парном мясе.


Как будет показано ниже, распад АТФ в процессе нарастания посмертного окоченения вызывает переход большей части актомиозина в нерастворимое состояние. При этом вследствие наличия в мясе на данной стадии его послеубойных изменений остаточного легкогидролизуемого фосфора не может образоваться высокоактивный актомиозин. В дальнейшем распад легкогидролизуемого фосфора резко замедляется, а в некоторых случаях к концу вторых суток хранения практически приостанавливается. После вторых суток наблюдается некоторое увеличение его количества. Ни в одной серии опытов не наблюдалось полного исчезновения легкогидролизуемого фосфора в процессе хранения мяса.
Данные о наличии и увеличении количества легкогидролизуемого P в охлажденном мясе крупного рогатого скота впоследствии были подтверждены Пальминым.
Как известно, кроме аденозинтрифосфорной кислоты (АТФ), аденозиндифосфорная кислота (АДФ) и пирофосфорная кислота также содержат легкогидролизуемый фосфор. Установить его наличие и природу в охлажденном мясе очень важно для правильного понимания сущности созревания мяса, т. к. актомиозиновый комплекс диссоциирует на составляющие его компоненты (актин и миозин) не только в присутствии АТФ, но и пирофосфор ной кислоты.
Следовательно, в присутствии этих кислот актомиозин с высоким процентом активности не может образоваться. Аденозин-дифосфорная и ортофосфорная кислоты такими свойствами не обладают.
Из полученных нами данных следует, что через 1-2 суток после убоя фракция остаточного фосфора в основном состоит из неорганического ортофосфата и негидролизуемого фосфора. Следовательно, на этой стадии послеубойного хранения наличие остаточного фосфора в этой фракции не может быть отнесено за счет АТФ, АДФ и пирофосфорной кислоты. Вместе с этим нами было доказано, что увеличение легкогидролизуемого фосфора на 4-6-е сутки созревания мяса должно быть отнесено за счет появления в экстракте пирофосфорной кислоты или АДФ, но не АТФ. Ввиду того, что пирофосфорная кислота оказывает на актомиозиновый комплекс действие, аналогичное АТФ, не исключена возможность влияния образующегося остаточного легкогидролизуемого фосфора на процесс диссоциации актомиозина на актин и миозин.
Результаты выполненных исследований также выясняют природу ферментов, ответственных за процесс послеубойных превращений АТФ.
Как уже было сказано, в этих превращениях принимают участие ферменты гликолиза и миозиновая АТФаза. Однако последний фермент не может быть единственным, принимающим участие в распаде АТФ, так как он катализирует только реакцию: АТФ → АДФ + неорганический фосфор (P).
Поэтому он должен был бы приводить к значительному увеличению количеств АДФ в мускулах после прекращения жизни животного.
Однако этого не происходит. Бейли показал, что после прекращения жизни АДФ обычно не накапливается в больших количествах в мускулах кролика. Поэтому необходимо вмешательство в этот процесс миокиназы. катализирующей реакцию

2АДФ → АТФ + АМФ.


Следовательно, миокиназа является дополнительным фактором, определяющим скорость распада АТФ.
Рассмотренные с таких позиций превращения АТФ убедительно объясняют явления, приводящие к послеубойному окоченению.

Если в дыхательной цепи окисляются ФАД-зависимые субстраты, то пунктов сопряжения остается 2: III и IV комплексы (Р/О = 2) на одну молекулу О 2 – 2 молекулы Н 3 РО 4 .

Таким образом на третьем этапе за счет водороддонорной и собственно энергетической функции цикла Кребса получаем 24 АТФ.

В сумме на всех трех этапах аэробного окисления 1 моля глюкозы получаем 38 молей АТФ.

Полная энергия распада глюкозы составляет 2880 кДж/моль. Свободная энергия гидролиза высокоэнергетической связи АТФ равна 50 кДж/моль. Для синтеза АТФ при окислении глюкозы используется 38 · 50 = 1900 кДж, что составляет 65% от всей энергии распада глюкозы. Это максимально возможная эффективность использования энергии глюкозы.

Значение анаэробного гликолиза .

Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т.е. в условиях, когда снабжение кислородом ограничено.

Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.

Пентозофосфатный путь в метаболизме глюкозы .

Глюкоза может окисляться без предварительной анаэробной фазы.

В результате исследований было установлено, что в печени, почках и форменных элементах крови, особенно во время усиленного обмена углеводов, наряду с увеличением содержания 6-монофосфоглюконовой кислоты образуются пентозо-фосфорные эфиры. Эти факты говорят о взаимосвязи между окислением гексоз и образованием пентоз.

Образование пентоз из глюкозы происходит путем декарбоксилирования и называется апотомическим утем .

Пентозофосфатный путь состоит из двух фаз: аэробной и анаэробной.

Аэробная фаза – система реакций, обусловливающих превращение глюкозы в пентозофосфорные эфиры.

В анаэробной фазе протекают реакции взаимодействия между образовавшимися пентозами, а также другими продуктами, и взаимосвязь их с гликолизом.

В результате окислительного пути (аэробная фаза) образуется 2 молекулы НАДФН 2 , которые не окисляются дыхательной цепью, а служат источником водорода и электронов при синтезах, включающих реакции восстановления, и образуется рибулозо-5-фосфат – фосфорилированная пентоза.

В результате неокислительного пути (анаэробная фаза) образуется рибозо-5-фосфат. Этот углевод и его производные используются для синтеза РНК, ДНК, АТФ, КоА, НАД и ФАД.

Неокислительная часть пути включает 2 типа реакций: транскетолазную и трансальдолазную. Коферментом транскетолазы является тиаминпирофосфат. Транскетолаза переносит С 2 -фрагменты, трансальдолаза – С 3 -фрагменты.

В результате неокислительного пути образуются фруктозо-6-фосфат, 3-фосфоглицериновый альдегид, из которых в процессе глюконеогенеза образуется глюкоза. Некоторые метаболиты неокислительного пути являются также и метаболитами гликолиза.

Все реакции пентозофосфатного пути происходят в цитозоле.

Лекция № 19.

ТЕМА «ОБМЕН УГЛЕВОДОВ».

1. Глюконеогенез – химизм, биологическое значение, локализация.

2. Регуляция обмена углеводов (глюконеогенеза).

4. Патология углеводного обмена: фруктозурия, галактоземия – биохимическая сущность.

  1. Меры профилактики нарушений обмена углеводов с их биохимическим обоснованием.
  2. Методы исследования углеводного обмена.

Глюконеогенез – это синтез глюкозы из неуглеводных предшественников. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере – почки и клетки слизистой оболочки кишечника. Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также при длительной физической работе концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза.

ГЛЮКОЗА
Нарисовать схему.

Использование первичных субстратов в глюконеогенезе происходит при различных физиологических состояниях. Так, в условиях голодания часть тканевых белков распадается до аминокислот, которые затем используются в глюконеогенезе. При распаде жиров образуется глицерин, который через диоксиацетонфосфат включается в глюконеогенез. Лактат, образующийся при интенсивной физической работе в мышцах, печени превращается в глюкозу. Следовательно, физиологическая роль глюконеогенеза из лактата, аминокислот и глицерина различна.

Глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении. Однако имеется очень важная особенность, обусловленная тем, что 3 реакции в гликолизе, катализируемые киназами: гесокиназой, фосфофруктокиназой и пируваткиназой, необратимы и на этих стадиях глюконеогенеза отличаются от реакций гликолиза.

Превращение пирувата в фосфоенолпируват осуществляется при участии двух ферментов – пируваткарбоксилазы (а) и карбоксикиназы фосфоенолпирувата (б):

пируваткарбоксилаза

Пируват + АТФ + СО 2 + Н 2 О ЩУК + АДФ + Н 3 РО 4 (а),

Фосфоенолпируват-

ЩУК + ГТФ карбоксикиназа фосфоенолпируват + СО 2 + ГДФ (б).

Две другие необратимые реакции катализируются фосфатазой фруктозо-1,6-бисфосфата и фосфатазой глюкозо-6-фосфата:

Фруктозо-1,6-бисфосфат +Н 2 О → фруктозо-6-фосфат + Н 3 РО 4 ,

Глюкозо-6-фосфат + Н 2 О → глюкоза + Н 3 РО 4 .

На каждую молекулу лактата при глюконеогенезе расходуется три молекулы АТФ (точнее, две АТФ и одна ГТФ); поскольку для образования глюкозы необходимо 2 молекулы лактата, суммарный процесс глюконеогенеза описывается так:

2 лактат + 6 АТФ + 6 Н 2 О → глюкоза + 6 АДФ + 6 Н 3 РО 4 .

Образовавшаяся глюкоза может вновь поступать в мышцы и там превращаться в молочную кислоту.

Сравним реакцию глюконеогенеза с суммарной реакцией гликолиза:

Глюкоза + 2 АДФ + 2 Н 3 РО 4 → 2 лактат + 2 АТФ + 2 Н 2 О.

Из этого сопоставления следует, что в результате действия цикла Кори работающие мышцы добывают 2 АТФ за счет расходования 6 АТФ в печени.

Последующие этапы переваривания нерасщеплённого или частично расщеплённого крахмала, а также других углеводов пищи происходит в тонком кишечнике в разных его отделах под действием гадролитических ферментов - гликозидаз.

Панкреатическая α-амилаза

В двенадцатиперстной кишке рН среды желудочного содержимого нейтрализуется, так как секрет поджелудочной железы имеет рН 7,5-8,0 и содержит бикарбонаты (НСО 3 -). С секретом поджелудочной железы в кишечник поступает панкреатическая α-амилаза. Этот фермент гидролизует α-1,4-гликозидные связи в крахмале и декстринах.

Продукты переваривания крахмала на этом этапе - дисахарид мальтоза, содержащая 2 остатка глюкозы, связанные α-1,4-связью. Из тех остатков глюкозы, которые в молекуле крахмала находятся в местах разветвления и соединены α-1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, образуются олигосахариды, содержащие 3-8 остатков глюкозы, связанные α-1,4- и α-1,6-связями.

α-Амилаза поджелудочной железы, так же, как α-амилаза слюны, действует как эндогликозидаза. Панкреатическая α-амилаза не расщепляет α-1,6-гликозидные связи в крахмале. Этот фермент также не гидролизует (3-1,4-гликозидные связи, которыми соединены остатки глюкозы в молекуле целлюлозы. Целлюлоза, таким образом, проходит через кишечник неизменённой. Тем не менее непереваренная целлюлоза выполняет важную функцию балластного вещества, придавая пище дополнительный объём и положительно влияя на процесс переваривания. Кроме того, в толстом кишечнике целлюлоза может подвергаться действию бактериальных ферментов и частично расщепляться с образованием спиртов, органических кислот и СО 2 . Продукты бактериального расщепления целлюлозы важны как стимуляторы перистальтики кишечника.

Мальтоза, изомальтоза и триозосахариды, образующиеся в верхних отделах кишечника из крахмала, - промежуточные продукты. Дальнейшее их переваривание происходит под действием специфических ферментов в тонком кишечнике. Дисахариды пищи сахароза и лактоза также гидролизуются специфическими дисахаридазами в тонком кишечнике.

Особенность переваривания углеводов в тонком кишечнике заключается в том, что активность специфических олиго- и дисахаридаз в просвете кишечника низкая. Но ферменты активно действуют на поверхности эпителиальных клеток кишечника.

Тонкий кишечник изнутри имеет форму пальцеобразных выростов - ворсинок, покрытых эпителиальными клетками. Эпителиальные клетки, в свою очередь, покрыты микроворсинками, обращёнными в просвет кишечника. Эти клетки вместе с ворсинками образуют щёточную каёмку, благодаря которой увеличивается поверхность контакта гидролитических ферментов и их субстратов в содержимом кишечника. На 1 мм 2 поверхности тонкой кишки у человека приходится 80-140 млн ворсинок.

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс

Этот ферментативный комплекс состоит из двух полипептидных цепей и имеет доменное строение. Сахаразо-изомальтазный комплекс прикрепляется к мембране микроворсинок кишечника с помощью гидрофобного (трансмембранного) домена, образованного N-концевой частью полипептида. Каталитический центр выступает в просвет кишечника.

Сахаразо-изомальтазный комплекс. 1 - сахараза; 2 - изомальтаза;

3 - связывающий домен; 4 - трансмембранный домен; 5 - цитоплазматический домен.

Связь этого пищеварительного фермента с мембраной способствует эффективному поглощению продуктов гидролиза клеткой.

Сахаразо-изомальтазный комплекс гидролизует сахарозу и изомальтозу, расщепляя α-1,2- и α-1,6-гликозидные связи. Кроме того, оба ферментных домена имеют мальтазную и мальтотриазную активности, гидролизуя α-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала). На долю сахаразо-изомальтазного комплекса приходится 80% от всей мальтазной активности кишечника. Но несмотря на присущую ему высокую мальтазную активность, этот ферментативный комплекс назван в соответствии с основной специфичностью. К тому же сахаразная субъединица - единственный фермент в кишечнике, гадролизующий сахарозу. Изомальтазная субъединица с большей скоростью гидролизует гликозидные связи в изомальтозе, чем в мальтозе и мальтотриозе.

Действие сахаразо-изомальтазного комплекса на мальтозу и мальтотриозу.

Действие сахаразо-изомальтазного комплекса на изомальтозу и олигосахарид.

В тощей кишке содержание сахаразо-изомальтазного ферментативного комплекса достаточно высокое, но оно снижается в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс

Этот ферментативный комплекс катализирует гидролиз α-1,4-связи между глюкозными остатками в олигосахаридах, действуя с восстанавливающего конца. По механизму действия этот фермент относят к экзогликозидазам. Комплекс расщепляет также связи в мальтозе, действуя как мальтаза. В гликоамилазный комплекс входят две разные каталитические субъединицы, имекдцие небольшие различия в субстратной специфичности. Гликоамилазная активность комплекса наибольшая в нижних отделах тонкого кишечника.

β-Гликозидазный комплекс (лактаза)

Лактаза расщепляет β-1,4-гликозидные связи между галактозой и глюкозой в лактозе.

Этот ферментативный комплекс по химической природе является гликопротеином. Лактоза, как и другие гликозидазные комплексы, связана с щёточной каемкой и распределена неравномерно по всему тонкому кишечнику. Активность лактазы колеблется в зависимости от возраста. Так, активность лактазы у плода особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность фермента снижается, составляя у взрослых 10% от уровня активности, характерного для детей.

Трегалаза - также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе - дисахариде, содержащемся в грибах. Трегалоза состоит из двух глюкозных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

Совместное действие всех перечисленных ферментов завершает переваривание пищевых олиго- и полисахаридов с образованием моносахаридов, основной из которых - глюкоза. Кроме глюкозы, из углеводов пищи также образуются фруктоза и галактоза, в меньшем количестве - манноза, ксилоза, арабиноза.

МЕХАНИЗМ ТРАНСМЕМБРАННОГО ПЕРЕНОСА ГЛЮКОЗЫ И ДРУГИХ МОНОСАХАРИДОВ В КЛЕТКИ

Моносахариды, образовавшиеся в результате переваривания, всасываются эпителиальными клетками кишечника с помощью специальных механизмов транспорта через мембраны этих клеток.

Всасывание моносахаридов в кишечнике

Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться разными способами: путём облегчённой диффузии по градиенту концентрации и активного транспорта по механизму симпорта за счет градиента концентрации ионов Na + . Na + поступает в клетку по градиенту концентрации, и одновременно глюкоза транспортируется против градиента концентрации (вторично-активный транспорт). Следовательно, чем больше градиент Na + , тем больше поступление глюкозы в энтероциты. Если концентрация Na + во внеклеточной жидкости уменьшается, транспорт глюкозы снижается. Градиент концентрации Na + , являющийся движущей силой активного симпорта, создаётся работой Nа + , К + -АТФ-азы, которая работает как насос, откачивая из клетки Na + в обмен на К + . В отличие от глюкозы, фруктоза транспортируется системой, не зависящей от градиента натрия.

Перенос в клетки слизистой оболочки кишечника по механизму вторично-активного транспорта характерен также для галактозы.

При разной концентрации глюкозы в просвете кишечника "работают" различные механизмы транспорта. Благодаря активному транспорту эпителиальные клетки кишечника могут поглощать глюкозу при её очень низкой концентрации в просвете кишечника. Если же концентрация глюкозы в просвете кишечника велика, то она может транспортироваться в клетку путём облегчённой диффузии. Таким же способом может всасываться и фруктоза. Следует отметить, что скорость всасывания глюкозы и галактозы гораздо выше, чем других моносахаридов.

После всасывания моносахариды (главным образом, глюкоза) покидают клетки слизистой оболочки кишечника через мембрану с помощью облегчённой диффузии в кровеносную систему.

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.


Close