2. Метод алгебраического сложения.
3. Метод введения нового переменного (метод замены переменной).

Определение: Системой уравнений называются несколько уравнений от одной или нескольких переменных, которые должны выполняться одновременно, т.е. при одинаковых значениях переменных для всех уравнений. Уравнения в системе объединяются знаком системы – фигурной скобкой.
Пример 1:

— система двух уравнений с двумя переменными x и y .
Решением системы являются корни . При подстановке этих значений уравнения превращаются в верные тождества:

Решение систем линейных уравнений.

Самым распространенным методом решения системы является метод подстановки.

Метод подстановки.

Метод подстановки для решения систем уравнений заключается в том, чтобы из одного уравнения системы выразить какую-либо переменную через другие, и подставить это выражение в остальные уравнения системы вместо выраженной переменной.
Пример 2:
Решить систему уравнений:

Решение:
Дана система уравнений и ее требуется решить методом подстановки.
Выразим переменную y из второго уравнения системы.
Замечание: «Выразить переменную» означает преобразовать равенство так, чтобы эта переменная осталась слева от знака равенства с коэффициентом 1, а все остальные слагаемые перешли в правую часть равенства.
Второе уравнение системы:

Оставим слева только y :

И подставим (вот оттуда то и идет название метода) в первое уравнение вместо у выражение, которому оно равно, т.е. .
Первое уравнение:

Подставим :

Решим это банальное квадратное уравнение. Для тех, кто забыл, как это делается, есть статья Решение квадратных уравнений. .

Итак, значения переменной x найдены.
Подставим эти значения в выражение для переменной y . Здесь получилось два значения x , т.е. для каждого из них следует находить значение y .
1) Пусть
Подставляем в выражение .

2) Пусть
Подставляем в выражение .

Все можно составлять ответ:
Замечание: Ответ в этом случае следует записывать попарно, чтоб не перепутать, какое значение переменной y соответствует какому значению переменной x.
Ответ:
Замечание: В примере 1 как решение системы указана только одна пара, т.е. эта пара является решением системы, но не полным. Потому, как решить уравнение или систему значит указать решение и показать, что других решений нет. А тут еще одна пара.

Оформим решение этой системы по-школьному:

Замечание: Знак «» значит «равносильно», т.е. следующая система или выражение равносильно предыдущей.

Обычно уравнения системы записывают в столбик одно под другим и объединяют фигурной скобкой

Система уравнений такого вида, где a, b, c - числа, а x, y - переменные, называется системой линейных уравнений .

При решении системы уравнений используют свойства, справедливые для решения уравнений .

Решение системы линейных уравнений способом подстановки

Рассмотрим пример

1) Выразить в одном из уравнений переменную. Например, выразим y в первом уравнении, получим систему:

2) Подставляем во второе уравнение системы вместо y выражение 3х-7 :

3) Решаем полученное второе уравнение:

4) Полученное решение подставляем в первое уравнение системы:

Система уравнений имеет единственное решение: пару чисел x=1, y=-4 . Ответ: (1; -4) , записывается в скобках, на первой позиции значение x , на второй - y .

Решение системы линейных уравнений способом сложения

Решим систему уравнений из предыдущего примера методом сложения.

1) Преобразовать систему таким образом, чтобы коэффициенты при одной из переменных стали противоположными . Умножим первое уравнение системы на "3".

2) Складываем почленно уравнения системы. Второе уравнение системы (любое) переписываем без изменений.

3) Полученное решение подставляем в первое уравнение системы:

Решение системы линейных уравнений графическим способом

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может: а) иметь единственное решение; б) не иметь решений; в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Графическое решение системы

Метод введения новых переменных

Замена переменных может привести к решению более простой системы уравнений, чем исходная.

Рассмотрим решение системы

Введем замену , тогда

Переходим к первоначальным переменным


Особые случаи

Не решая системы линейных уравнений, можно определить число ее решений по коэффициентам при соответствующих переменных.


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Давайте разберемся, как же решать системы уравнений способом подстановки?

1) Выразим из первого или второго уравнения системы неизвестное х или у (как нам удобнее);

2) Подставим в другое уравнение (в то, из которого не выражали неизвестное) вместо неизвестного х или у (если выражали х , подставляем вместо х ; если выражали у , подставляем вместо у ) полученное выражение;

3) Решаем уравнение, которое получили. Находим х или у;

4) Подставляем полученное значение неизвестного и находим второе неизвестное.

Правило записано . Теперь давайте попробуем применить его при решении системы уравнений.

Пример 1 .

Внимательно посмотрим на систему уравнений. Замечаем, что из первого уравнения легче выразить у .

Выражаем у :

–2у = 11 – 3х

у = (11 – 3х)/(–2)

у = –5,5 + 1,5х

Теперь аккуратно подставим во второе уравнение вместо у выражение –5,5 + 1,5х.

Получим: 4х – 5(–5,5 + 1,5х) = 3

Решаем это уравнение:

4х + 27,5 – 7,5х = 3

–3,5х = 3 – 27,5

–3,5х = –24,5

х = –24,5/(–3,5)

Подставляем в выражение у = – 5,5 + 1,5х вместо х значение, которое мы нашли. Получаем:

у = – 5,5+ 1,5 · 7 = –5,5 + 10,5 = 5.

Ответ: (7; 5)

Интересно, а если выразить из первого уравнения не у , а х , измениться ли ответ?

Давайте попробуем выразить х из первого уравнения.

х = (11 + 2у)/3

Подставим вместо х во второе уравнение выражение (11 +2у)/3, получим уравнение с одним неизвестным и решим его.

4(11 + 2у)/3 – 5у = 3, умножим обе части уравнения на 3, получим

4(11 + 2у) – 15у=9

44 + 8у – 15у = 9

–7у = 9 – 44

у = –35/(–7)

Находим переменную х, подставляя 5 в выражение х = (11 +2у)/3.

х = (11 +2·5)/3 = (11+10)/3 = 21/3 = 7

Ответ: (7; 5)

Как видите, ответ получился такой же . Если вы будете внимательны и аккуратны, то независимо от того, какую переменную вы выражаете – х или у , ответ получите правильный.

Довольно часто ученики спрашивают: «Есть ли еще другие способы решения систем, кроме сложения и подстановки? »

Есть некоторое видоизменение способа подстановки – способ сравнивания неизвестных .

1) Надо из каждого уравнения системы выразить одно и то же неизвестное через второе.

2) Полученные неизвестные сравнивают, получают уравнение с одним неизвестным.

3) Находят значение одного неизвестного.

4) Подставляют полученное значение неизвестного и находят второе неизвестное.

Пример 2 . Решить систему уравнений

Из двух уравнений выразим переменную х через у .

Получим из первого уравнения х = (13 – 6у) / 5, а из второго х = (–1 – 18у) / 7.

Сравнивая эти выражения, получаем уравнение с одним неизвестным и решаем его:

(13 – 6у) / 5 = (–1 – 18у) / 7

7 (13 – 6у) = 5 (–1 – 18у)

91 – 42у = –5 – 90у

–42у + 90у = –5 – 91

у = – 96 / 48

Неизвестное х найдем подставив значение у в одно из выражений для х .

(13 – 6(– 2)) / 5= (13+12) / 5 = 25/5 = 5

Ответ: (5; –2).

Думаю, что и у вас все получиться. Если остались вопросы, приходите ко мне на уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1 . Ф.И.О. учителя: ____Ткачук Наталья Петровна _________________________________________________________________________________________________

2. Класс: _8 Дата: .11.03________Предмет_-математика, №71 урока по расписанию:

3. Тема урока Решение систем способом подстановки 4 . Место и роль урока в изучаемой теме :. Урок закрепления знаний . Цель урока :

Образовательная: развить знания решения систем уравнений способом подстановки. Знать/понимать: если графики имеют общие точки, то система имеет решения; если у графиков нет общих точек, то система решений не имеет; алгоритм решения систем уравнений. Уметь решать системы способом подстановки Содействовать развитию умений применять полученные знания в нестандартных (типовых) условиях Развивающая: Способствовать развитию умений учащихся обобщать полученные знания, проводить анализ, синтез, сравнения, делать необходимые выводы. Содействовать развитию умений применять полученные знания в нестандартных и типовых условиях. Воспитательная: Способствовать развитию творческого отношения к учебной деятельности

Характеристика этапов урока

Деятельность

учеников

Самоопределение.

Активизировать познавательную активность

Решить систему

словесный

Фронтальная

Приветствие учащихся. проведение. Создание ситуации готовности к уроку, успеха на предстоящем уроке.

Проверяют готовность к уроку.

2.Актуализация знаний.

Выявить качество и уровень овладения знаниями и умениями, полученными на предыдущих уроках по теме

Выяснить, является ли пара чисел решением системы. х=5 у=9

Какие операции можно производить с уравнениями?

(умножать обе части уравнения на одно и тоже число, делить на число не равное нулю ….)

Работа в группе

Фронтальная. Гупповая-разбор алгоритмов решения задач;

При необходимости задает наводящие вопросы.

Отвечают на поставленные вопросы.

3.Постановка учебной задачи, целей урока.

Формирование

и развитие умения

определять и формулировать

проблему, цель и тему

для изучения линий

Как решается система уравнений способом сложения, способом подстановки.

Какой способ целесообразно применить при решении. данной системы?

Работа в группе.

Индивидуальная.

Фронтальная.

Какие действия мы проделали, чтобы узнать стоимость покупки?

Какую тему мы будем изучать?

Высказываются.

4. Этап актуализации знаний по теме

Содействовать развитию умений различать и сопоставлять линии. Обеспечить условия для развития умений грамотно, чётко и точно выражать свои мысли.

621

Выяснить взаимное расположение прямых

2х+0.5у= 1,2 и х- 4у=0

Можно ли определить пересекаются прямые или нет по их коэффициентам?

2. составь уравнения прямых которые параллельны между собой.

Работа с учнбником

Работа в парах с самопроверкой

Фронтальная, индивидуальная. практикум по решению задач

При необходимости задает наводящие вопросы. Проводит параллель с ранее изученным материалом.

Обеспечивает мотивацию выполнения предложенных задач.

Подводит обучающихся к выводу о существованию формул.

Решают задачи, отвечают на вопросы учителя при необходимости Выполняют упражнение в тетради.

По очереди комментируют, анализируют, определяют причины и способы решения.

5.Работа по самостоятельному

применению полученных знаний. Актуализация знаний и умений в решении задач.

Формирование и развитие умений чтения чисел.Планирование своей деятельности для решения поставленной задачи, контроль полученного результата, коррекция полученного результата, само регуляция

1 вар –

2 вар

Самостоятельная работа. Проверка соседа.

«мозговой штурм»,

Контролирует выполнение работы.

Осуществляет: индивидуальный контроль; выборочный контроль.

Побуждает к высказыванию своего мнения.

Решают задачи. Осуществляют: самооценку;взаимопроверку; выставляют предварительную оценку.

6.Оценка урока, самооценка.

Формирование и развитие умения анализировать и осмысливать свои достижения.

Умение определять уровень овладения учебным материалом.

Оценка промежуточных результатов и само регуляция для повышения мотивации учебной деятельности

Оценка на каждом этапе

1. умеешь ли ты строить графики линейных уравнений?

2.Умеешь ли ты определять, пересекаются они или нет.

3.знаешь ли ты алгоритм решения систем уравнений?

4. какие способы ты знаешь решения систем уравнений?

Работа в группе.

Групповая и индивидуальная..

Побуждает к высказыванию своего мнения.

Осуществляют: самооценку и оценку товарища.

7.Итоги урока. Домашнее задание.

Умение соотносить цели и результаты собственной дея-тельности. Под-держание здоро-вого духа сопер-ничества для под-держания мотива-ции учебной дея-тельности; участие в коллективном обсуждении проблем.

п п. 4.4 №623

Работа в группе.

Фронтальная-Выделение и формулиров-ание поз-навательной цели рефлексия способов и условий действия

Анализ и синтез объектов

Побуждает к высказыванию своего мнения.

Дает комментарий к домашнему заданию; задание на поиск в тексте особенностей...

Дети участвуют в дискуссии, анализируют, проговаривают. Осмысливают и фиксируют свои достижения.

Сегодня на уроке я узнал…

Сегодня на уроке я научился…


Close