Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году и назывался «Опыт системы элементов».

Д.И. Менделеев расположил 63 известных в то время элемента в порядке возрастания их атомных масс и получил естественный ряд химических элементов , в котором он обнаружил периодическую повторяемость химических свойств. Данный ряд химических элементов теперь известен как Периодический закон (формулировка Д.И. Менделеева):

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка закона звучит так:

с войства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значений зарядов ядер атомов.

Графическим изображением периодического закона является периодическая таблица .

В ячейке каждого элемента указаны его важнейшие характеристики.

Периодическая таблица содержит группы и периоды.

Группа - столбец периодической системы, в котором располагаются химические элементы, обладающие химическим сходством вследствие идентичных электронных конфигураций валентного слоя.

Периодическая система Д.И. Менделеева содержит восемь групп элементов. Каждая группа состоит их двух подгрупп: главной (а) и побочной (б). В главной подгруппе содержатся s- и p- элементы, в побочной - d- элементы.

Названия групп:

I-a Щелочные металлы.

II-a Щелочноземельные металлы.

V-a Пниктогены.

VI-a Халькогены.

VII-a Галогены.

VIII-a Благородные (инертные) газы.

Период - это последовательность элементов, записанная в виде строки, расположенных в порядке увеличения зарядов их ядер. Номер периода соответсвует количеству электронных уровней в атоме.

Период начинается с щелочного металла (или водорода) и заканчивается благородным газом.

Параметр

По группе вниз

По периоду вправо

Заряд ядра

Увеличивается

Увеличивается

Число валентных электронов

Не меняется

Увеличивается

Число энергетических уровней

Увеличивается

Не меняется

Радиус атома

Увеличивается

Уменьшается

Электроотрицательность

Уменьшается

Увеличивается

Металлические свойства

Увеличиваются

Уменьшаются

Степень окисления в высшем оксиде

Не меняется

Увеличивается

Степень окисления в водородных соединениях (для элементов IV-VII групп)

Не меняется

Увеличивается


Современная периодическая таблица химических элементов Менделеева.

Периодический закон Д.И Менделеева.

Свойства химических элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости, от величины атомного веса.

Физический смысл периодического закона.

Физический смысл периодического закона заключается в периодичном изменении свойств элементов, в результате периодически повторяющихся e-ых оболочек атомов, при последовательном возрастании n.

Современная формулировка ПЗ Д.И Менделеева.

Свойство химических элементов, а также свойство образованных ими простых или сложных веществ находится в периодичной зависимости от величины заряда ядер их атомов.

Периодическая система элементов.

Периодическая система – система классификаций химических элементов, созданная на основе периодического закона. Периодическая система – устанавливает связи между химическими элементами отражающие их сходства и различия.

Периодическая таблица(существует два вида: короткая и длинная) элементов.

Периодическая таблица элементов – графическое отображение периодической системы элементов, состоит из 7 периодов и 8 групп.

Вопрос 10

Периодическая система и строение электронных оболочек атомов элементов.

В дальнейшем было установлено, что не только порядковый номер элемента имеет глубокий физический смысл, но и другие понятия, ранее рассмотренные ранее также постепенно приобретали физический смысл. Например, номер группы, указывая на высшую валентность элемента, выявляет тем самым максимальное число электронов атома того или иного элемента, которое может участвовать в образовании химической связи.

Номер периода, в свою очередь, оказался связанным с числом энергетических уровней, имеющихся в электронной оболочке атома элемента данного периода.

Таким образом, например, „координаты" олова Sn (порядковый номер 50, 5 период, главная подгруппа IV группы), означают, что электронов в атоме олова 50, распределены они на 5 энергетических уровнях, валентными являются лишь 4 электрона.

Физический смысл нахождения элементов в подгруппах различных категорий чрезвычайно важен. Оказывается, что у элементов, расположенных в подгруппах I категории, очередной (последний) электрон располагается на s-подуровне внешнего уровня. Эти элементы относят к электронному семейству. У атомов элементов, расположенных в подгруппах II категории, очередной электрон располагается на р-подуровне внешнего уровня. Это, элементы электронного семейства „р". Так, очередной 50-й электрон у атомов олова располагается на р-подуровне внешнего, т. е. 5-го энергетического уровня.

У атомов элементов подгрупп III категории очередной электрон располагается на d-подуровне , но уже пред внешнего уровня, это элементы электронного семейства «d». У атомов лантаноидов и актиноидов очередной электрон располагается на f-подуровне, пред пред внешнего уровня. Это элементы электронного семейства «f».

Не случайно, следовательно, отмеченные выше числа подгрупп этих 4-х категорий, то есть 2-6-10-14, совпадают с максимальными числами электронов на подуровнях s-p-d-f.

Но можно, оказывается, решить вопрос о порядке заполнения электронной оболочки и вывести электронную формулу для атома любого элемента и на основе периодической системы, которая с достаточной ясностью указывает уровень и подуровень каждого очередного электрона. Периодическая система указывает и на размещение одного за другим элементов по периодам, группам, подгруппам и на распределение их электронов по уровням и подуровням, потому что каждому элементу соответствует свой собственный, характеризующий его последний электрон. В качестве примера разберем составление электронной формулы для атома элемента циркония (Zr). Периодическая система дает показатели и „координаты" этого элемента: порядковый номер 40, период 5, группа IV, побочная подгруппа. Первые выводы: а) всех электронов 40, б) эти 40 электронов распределены на пяти энергетических уровнях; в) из 40 электронов только 4 являются валентными, г) очередной 40-й электрон поступил на d-подуровень пред внешнего, т. е. четвертого энергетического уровня. Подобные выводы можно сделать о каждом из 39 элементов, предшествующих цирконию, только показатели и координаты будут каждый раз иными.

Периодический закон Д.И.Менделеева, его современная формулировка. В чем её отличие от той, которая была дана Д.И.Менделеевым? Поясните, чем обусловлено такое изменение формулировки закона? В чем заключается физический смысл Периодического закона? Поясните причину периодического изменения свойств химических элементов. Как вы понимаете явление периодичности?

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

В современном состоянии Периодическая система элементов состоит из 10 горизонтальных рядов (периодов) и 8 вертикальных столбцов (групп). Первые три ряда образуют три малых периода. Последующие периоды включают по два ряда. Кроме того, начиная с шестого, периоды включают дополнительные ряды лантаноидов (шестой период) и актиноидов (седьмой период).

По период наблюдается ослабление металлических свойств и усиление неметаллических. Конечный элемент периода представляет собой благородный газ. Каждый последующий период начинается со щелочного металла, т. е. по мере роста атомной массы элементов изменение химических свойств имеет периодический характер.

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

Периодические свойства химических элементов

В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

Энергия ионизации атомов;

Энергия сродства атомов к электрону;

Электроотрицательность;

Атомные (и ионные) радиусы;

Энергия атомизации простых веществ

Степени окисления;

Окислительные потенциалы простых веществ.

Физический смысл периодического закона состоит в том, что периодическое изменение свойств элементов находится в полном соответствии с периодически возобновляющимися на все более высоких энергетических уровнях сходными электронными структурами атомов. С их закономерным изменением закономерно изменяются физические и химические свойства.

Физический смысл периодического закона стал понятен после создания теории строения атома.

Итак, физический смысл периодического закона состоит в том, что периодическое изменение свойств элементов находится в полном соответствии с периодически возобновляющимися на все более высоких энергетических уровнях сходными электронными структурами атомов. С их закономерным изменением закономерно изменяются физические и химические свойства элементов.

В чем состоит физический смысл периодического закона.

Этими выводами вскрывается физический смысл периодического закона Д. И. Менделеева, который оставался неясным в течение полувека после открытия этого закона.

Отсюда следует, что физический смысл периодического закона Д. И. Менделеева состоит в периодичности повторения сходных электронных конфигураций при возрастании главного квантового числа и объединении элементов по близости их электронного строения.

Теория строения атомов показала, что физический смысл периодического закона состоит в том, что при последовательном возрастании зарядов ядер периодически повторяются сходные валентные электронные структуры атомов.

Из всего изложенного ясно, что теория строения атома раскрыла физический смысл периодического закона Д. И. Менделеева и еще ярче выявила его значение как основы для дальнейшего развития химии, физики и ряда других наук.

Замена атомной массы зарядом ядра была первым шагом в раскрытии физического смысла периодического закона, Далее, было важно установить причины возникновения периодичности, характер периодической функции зависимости свойств от заряда ядра, объяснить величины периодов, число редкоземельных элементов и пр.

Для элементов-аналогов наблюдается одинаковое число электронов на одноименных оболочках при разных значениях главного квантового числа. Поэтому физический смысл Периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при последовательном возрастании значений главного квантового числа.

Для элементов - аналогов наблюдается одинаковое число электронов на одноименных орбиталях при разных значениях главного квантового числа. Поэтому физический смысл Периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при последовательном возрастании значений главного квантового числа.

Таким образом, при последовательном увеличении зарядов атомных ядер периодически повторяется конфигурация электронных оболочек и, как следствие, периодически повторяются химические свойства элементов. В этом заключается физический смысл периодического закона.

Периодический закон Д. И. Менделеева является основой современной химии. Изучение строения атомов вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элементов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химической связи в молекулах определяет свойства веществ. Поэтому данный раздел является одним из важнейших разделов общей химии.

естествознание периодический экосистема

1

Махов Б.Ф.

В связи с разработкой автором «Колебательной модели нейтрального атома» с включением «мирового эфира», в которой понятия «постоянный положительный заряд атомного ядра» и «кулоновское поле» становятся излишними, встает вопрос о новой формулировке Периодического закона. Такая формулировка предлагается в данной статье, где рассматривается также проблема математического выражения Периодического закона. В статье автор использует собственный вариант «Симметричной квантовой Периодической системы нейтральных атомов (СК-ПСА)», адекватный Колебательной модели.

Всё более удаляется от нас 1869 год - время первой формулировки Периодического закона Д.И. Менделеева (ПЗМ) и разработки им Периодической системы элементов (ПСЭ-М), в которых за главный критерий упорядочения был принят атомный вес элемента, доступная тогда и более или менее понятная характеристика. Но даже сам Дмитрий Иванович говорил, что «причины периодичности мы не знаем». Тогда было известно всего 63 элемента, а об их свойствах (в основном химических) было известно мало и не всегда точно.

Тем не менее, проблема систематизации элементов уже заявила о себе и требовала решения. Гениальная интуиция Менделеева позволила ему успешно (на тогдашнем уровне знаний) справиться с задачей. Его формулировка ПЗМ (октябрь 1971): «...свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Дмитрий Иванович выстроил все элементы в ряд (ряд Менделеева) по возрастанию атомного веса, в котором однако им же были допущены отступления для известных пар элементов (на основе химических свойств), т.е. фактически имеется зависимость не только от атомного веса.

Ученым стало понятно, что при переходе от одного элемента в ПСЭ-М к следующему какая-то характеристика элемента ступенчато возрастает на одну и ту же величину. Эта величина - Z получила название порядковый номер (в основном у химиков) или атомный номер (у физиков). Выяснилось, что и сам атомный вес определенным образом зависит от Z . Поэтому в качестве главного критерия упорядочения был принят порядковый номер Z, который соответственно вошел во 2-ю формулировку ПЗМ вместо атомного веса.

Шло время, и появились новые возможности систематизации. Это прежде всего успехи в исследовании линейчатых оптических спектров (ЛОС) нейтральных атомов и характеристического рентгеновского излучения (ХРИ). Выяснилось, что каждый элемент обладает уникальным спектром и целый ряд новых элементов были по ним и открыты. Для описания спектров были предложены квантовые числа, спектральные термы, принцип запрета В.Паули, закон Г.Мозли и др. Исследование атомов увенчалось созданием первых моделей атома (МОА), уже после смерти Д.И.Менделеева.

Закон Мозли, связавшего частоту характеристического рентгеновского излучения с порядковым номером Z , внес особенно большой вклад в науку. Он подтвердил правильность Менделеевского ряда и позволил указать на номера оставшихся еще неоткрытыми элементов. Но затем, руководствуясь благими намерениями придать порядковому номеру Z физический смысл, физики на уровне знаний начала XIX века (первые модели атома) пришли к поспешному выводу, что он не может быть ничем иным как постоянным положительным электрическим зарядом атомного ядра (количеством элементарных электрических зарядов - eZ).

В итоге ученые пришли к выводу, что нужна уточненная 2-я формулировка ПЗМ, в которой в качестве главного критерия систематизации был принят постоянный положительный электрический заряд ядра атома элемента.

Но, к сожалению, в начале ХХ века первые модели атома были представлены чересчур механистически (планетарные ядерные модели), а электрическая нейтральность атома в целом - положительным зарядом ядра и соответствующим количеством отрицательных элементарных частиц - электронов, т.е. тоже на уровне примитивных знаний того времени об электричестве. В результате использовались представления о постоянном кулоновском электрическом поле, притягивающем вращающиеся вокруг ядра электроны и пр. И не дай бог электрону упасть на ядро!

Открытие волновой природы электрона и многие проблемы с принятой моделью атома обусловили переход к «квантовомеханической модели атома». Квантовую механику (КВМ) объявили величайшим достижением ХХ века. Но с течением времени восторги поутихли. Причина - шаткая основа, на которой построена КВМ, базирующаяся на уравнении Шредингера, которое «описывает движение электрона». Прежде всего, неверен сам подход - вместо того, чтобы рассматривать равновесное квантовое состояние нейтрального атома в целом (на макроуровне, говоря языком синергетики), в КВМ рассматривают движение электрона (т.е. работают на излишне детализированном микроуровне). Представьте себе, что для случая идеального газа вместо рассмотрения его на макроуровне с постоянными по времени параметрами состояния газа (давлением, температурой, объемом) вдруг стали бы писать уравнения движения для каждого из миллиардов атомов и молекул газа, громко стеная при этом о трудности задачи и недостаточной мощности современных ЭВМ. В то время как на макроуровне все картина легко и изящно описывается с помощью уравнения связи параметров состояния газа - уравнения Клапейрона-Менделеева. [ФЭС, М, СЭ, 1984, с.288]

Нечто похожее по сложности предлагает нам КВМ в лице ее отцов-основателей, особенно для случая атомов с большими порядковыми номерами. Однако академик Лев Ландау (1908-68), сам один из столпов КВМ, уже писал : «Атом с более чем одним электроном представляет собой сложную систему взаимодействующих друг с другом электронов. Для такой системы можно, строго говоря, рассматривать только состояния системы в целом». Эта же идея имеется в работах физика-спектроскописта акад. АН БССР Ельяшевича М.А. (1908-95).

Однако вернемся к рассмотрению формулировок Периодического закона. Современная (уточненная 2-я) формулировка ПЗМ звучит так:

«Свойства элементов находятся в периодической зависимости от заряда их атомных ядер». Заряд ядра eZ = атомному (порядковому) номеру элемента в системе, помноженному на элементарный электрический заряд (т.е. Z численно равен количеству элементарных электрических зарядов).

Почему же нужна новая, 3-я формулировка ПЗМ?

1) Из 2-й формулировки не очень понятно, о каких свойствах идет речь - если о химических, то они не имеют прямого отношения к элементам (нейтральным атомам). При взаимодействии нейтральных атомов происходит перекрытие их переменных ЭМП, в результате они оказывают друг на друга определенную степень возбуждения. Для описания химической связи нужно знать дополнительно - что с чем соединяется (состав и структура вещества) и при каких конкретных физических условиях (КФУ) и т.д.

2) Согласно разработанной автором «Колебательной модели», у ядра нейтрального атома нет ни постоянного электрического заряда, ни создаваемого им постоянного кулоновского поля (вместо этого - пульсирующее ядро, переменное электромагнитное поле - ЭМП, стоячая ЭМВ, параметрический резонанс, высокая добротность колебаний, долговечность атома). См ФИ, 2008, № 3, с.25

3) То есть нет четкого определения ни аргумента, ни функции. Насчет характера периодической зависимости тоже нет определенности. ПЗМ бесполезен без одновременного рассмотрения самой таблицы Периодической системы, поэтому его часто вообще не упоминают в учебниках в существующей формулировке («порочный круг»). Не случайно мы до сих пор не имеем полной теории Периодической системы и самого математического выражения ПЗМ.

4) Сейчас можно использовать принципиально новые возможности для более корректной формулировки Периодического закона и вывода его математического выражения, которые дают «Колебательная модель нейтрального атома» (связанных колебаний ядра и окружающей его среды) и «Симметричная квантовая Периодическая система нейтральных атомов (СК-ПСА)», разработанные и опубликованные автором.

5) Согласно синергетическому подходу, равновесное квантовое состояние атома в целом» (макроскопический подход) может быть описано несколькими независимыми от времени параметрами. Автором показано, что ими является присущий каждому атому строго индивидуальный (принцип запрета В.Паули) набор 4-х квантовых чисел, определяемых из его ЛОС (а не из уравнений КВМ).

Такой набор квантовых чисел однозначно определяет место элемента (его координаты) в разработанной автором СК-ПСА.

6) Такие параметры должны отвечать ряду требований:

Отвечать физической природе нейтрального атома (согласно «Колебательной модели»)

Быть однозначными

Быть целочисленными (что вытекает из самой сути излучения ядра)

Легко измеряться (из спектров нейтрального атома).

Таким образом, смысл известных для каждого атома квантовых чисел должен быть уточнен согласно их физической природе.

7) Вместо уравнения КВМ Э. Шредингера автор предлагает использовать уравнения связи квантовых чисел (уравнения Махова) (автором найдены два таких уравнения) , которые и являются математическим выражением ПЗМ, адекватным новой формулировке. Подробнее об этом в готовящейся к изданию книге .

8) В свете «Колебательной модели нейтрального атома» и нового представления о переменном ЭМП ядра для новой формулировки Периодического закона вместо элементарного электрического заряда нужна другая физическая величина, вместе с порядковым номером Z характеризующая напряженность электромагнитного взаимодействия (ступенчато изменяющаяся с ростом Z) и однозначно определяемая из спектра нейтральных атомов. И такая величина есть - это постоянная тонкой структуры (α) [ФЭС-763], которую обычно используют при поисках "верхней границы Периодической системы".

Новая формулировка ПЗМ выглядит так:

«Характеристики нейтральных атомов находятся в периодической зависимости от величины напряженности (αZ ) переменного электромагнитного поля (ЭМП), создаваемого их ядрами». К такой краткой формулировке автор пришел 22 ноября 2006 г. после ряда «пространных».

Из нее видно, что вместо величины электрического заряда (eZ ), в которую входит элементарный электрический заряд, используется величина напряженности (αZ ), в которую входит α - постоянная тонкой структуры, которая «в квантовой электродинамике рассматривается как естественный параметр, характеризующий «силу» электромагнитного взаимодействия» [ФЭС, с.763].

Про характеристики нейтральных атомов (о квантовых числах, их физической природе и др.) мы уже говорили, а вот о характере периодической зависимости еще нужно немного пояснить. Уже сейчас имеются предпосылки для вывода уравнений связи квантовых чисел - это (n + l )- правила академика В.М. Клечковского (1900-72) и (n - l )- правило дхн, проф. Д.Н. Трифонова , которые использованы автором для построения СК-ПСА. Помня о переменном ЭМП и распространяющейся (на конкретную для каждого атома глубину) стоячей ЭМВ, можно сказать, что сумма этих квантовых чисел представляет полную энергию стоячей ЭМВ, а разность - глубину изменения параметра колебаний. То есть уже имеются связки квантовых чисел, которые представляют в СК-ПСА (n + l )- период (все они парные и образуют диады), а (n - l )- группы последовательных атомов - горизонтальные ряды СК-ПСА (до 4-х в периоде в пределах Z ≤ 120), представляющие собой последовательности f -, d -, p -, s - элементов. Т.е., при одном квантовом энергетическом уровне могут быть несколько квантовых состояний. Дальнейший учет особенностей двуединой стоячей ЭМВ и позволяет вывести уравнения связи квантовых чисел (уравнения Махова).

Пример: Полная энергия стоячей ЭМВ E n + l = E n + E l = const , где E n и E l - средние значения энергии электрической и магнитной составляющих ее частей.

Для прояснения физического смысла квантовых чисел воспользуемся формулой энергии квантового излучателя (в общем виде) E = Eo (2k + 1), отсюда → = 2k

Конкретно имеем для E n + l = E o (2 + 1) → = n + l , то есть сумма квантовых чисел (n + l ) - это отношение приращение полной энергии стоячей ЭМВ к ее исходному значению, что придает физический смысл упомянутому выше первому правилу академика В.М. Клечковского.

Стоячая ЭМВ - это материальный носитель параметрического резонанса (при постоянной внутренней энергии происходит перекачка энергии из электрической в магнитную и обратно с огромной частотой). При этом разность средних значений энергии электрической и магнитной составляющих полной энергии ЭМВ E n - l = E n - E l - величина изменения параметра также квантуется.

E n - l = E о (2 + 1) → = n - l , это отношение придает физический смысл правилу Д.Н Трифонова и отсюда же становится понятным правило n - l ≥ 1, так как иначе нет стоячей ЭМВ (не должно быть присущего бегущей волне n = l , и связанного с ней уноса энергии). Можно ввести понятие «относительная величина изменения параметра» : = = λ

Квантуются также средние значения составляющих полной энергии стоячей ЭМВ

E n = Eo (2n + 1) → = 2n

E l = Eo (2l + 1) → = 2l

отсюда квантовые числа n и l приобретают новый физический смысл как квантовые числа составляющих электрической и магнитной энергий полной энергии стоячей ЭМВ (вместо "главное квантовое число" и "орбитальное квантовое число").

Высокая и постоянная частота стоячей ЭМВ находит свое выражение через периодические функции, применительно к нашему случаю - тригонометрические. Двуединость стоячей ЭМВ - в параметрическом задании функции. Стоячая ЭМВ как гармоническая волна может быть описана уравнениями синусоиды вида y = A sin (ω t + φ ),

тогда n t = n cos α и l t = l sin α (параметрическое задание эллипса).

здесь n и l - квантовые числа (безразмерные целочисленные величины), показатели максимальной амплитуды относительной энергии электрической и магнитной составляющих стоячей ЭМВ, а n t и l t - текущие значения колеблющихся величин (составляющих стоячей ЭМВ) в данный момент времени , т.е. тоже величины безразмерные.*)

0 ≤ |n t | ≤ n 0 ≤ |l t | ≤ l

Поясним, что имеются именно две зависимости - косинусоида и синусоида На границе раздела «Ядро-окружающая среда» в начальный момент излучения первая имеет максимальную амплитуду - n to = n (иначе нет излучения), а амплитуда другой - l to = 0 (т.е имеется сдвиг по фазе). Начав распространяться от ядра, одна составляющая стоячей ЭМВ порождает другую и наоборот. Автор хотел бы предостеречь от поспешного вывода, что раз l to = 0, то и магнитная составляющая полной энергии стоячей ЭМВ также равна нулю. Это не так, достаточно вспомнить формулу квантового гармонического излучателя.

Вот это уравнение эллипса + = 1 (в канонической форме, обычное для связи гармонических колебаний) и представляет собой одно из уравнений связи квантовых чисел.

Физический смысл данного уравнения связи становится более ясным, если произвести некоторые преобразования. Для этого воспользуемся представлением эллипса как гипотрохоиды .

Для нашего случая ; .

Это - 1-е уравнение связи квантовых чисел (уравнение Махова).

Или достаточно наглядно .

Видно, что уравнение отражает постоянство полной энергии стоячей ЭМВ. Таким образом, вышеупомянутые связки квантовых чисел (n + l )- номер периода в СК-ПСА, а (n - l )- определяет последовательность местоположения входящих в состав периода горизонтальных рядов - нашли своё место в уравнении связи, а само уравнение хорошо отражает структуру СК-ПСА.

Нами получено еще одно, 2-е уравнение связи для остальных двух квантовых чисел (из полного набора в соответствии с принципом запрета В.Паули) - m l и m s , но о них в двух словах не скажешь, да и с физическим смыслом "спинового" квантового числа m s нужно ещё разобраться - об этом см.

Начало (порядковый номер исходного элемента - Z M ) каждой M-диады (пары периодов СК-ПСА) можно получить из выполненного автором тождественного преобразования формулы В.М. Клечковского для номера Z l элемента, при котором впервые появляется элемент с данным значением l max

Z M = Z l -1 = = ,

тогда при l max = 0; 1; 2; 3; 4... имеем Z M = 0; 4; 20; 56; 120..., т.е. это так называемые тетраэдрические числа, что опосредованно связано с некими минимальными исходными для диады квантовыми энергетическими уровнями (тетраэдр среди всех пространственных тел имеет минимальную площадь поверхности при фиксированном объёме).

Более подробно на эту тему и упомянутых двух уравнениях связи квантовых чисел автор предполагает сообщить в готовящихся к печати работах .

Автор не претендует этой работой, естественно, на создание полной теории Периодической системы нейтральных атомов и ее математического выражения, но считает ее необходимым и важным этапом на этом пути, и в меру своих сил будет содействовать дальнейшему продвижению.

СПИСОК ЛИТЕРАТУРЫ:

  1. Клечковский В.М. «Распределение атомных электронов и правило последовательного заполнения (n + l )- групп», М., Атомиздат, 1968
  2. Клечковский В.М. «Развитие некоторых теоретических проблем Периодической системы Д.И. Менделеева" (доклад на симпозиуме Х Менделеевского съезда). М., Наука, 1971, стр. 54-67.
  3. Трифонов Д.Н. "Структура и границы периодической системы", М., Атомиздат, 1976, 271 стр.
  4. Махов Б.Ф., книга "Симметричная квантовая Периодическая система элементов" (СК-ПСЭ), Москва, 1997 - ISBN 5-86700-027-3
  5. Махов Б.Ф., Статья «Симметричная квантовая периодическая система элементов (нейтральных атомов) - СК-ПСА (или Новая периодизация Периодической системы», в журнале РАЕ «Фундаментальные исследования», 2007, № 9, с. 30-36 - ISSN 1812-7339
  6. Махов Б.Ф., Доклад «Проявление парности в Периодической системе нейтральных атомов (СК-ПСА)», в Трудах V-Межд. конференции «Биниология, симметрология и синергетика в естественных науках», сент. 2007, г. Тюмень, ТюмГНГУ, Раздел «Физика и химия», стр. 59-65 ISBN 978-5-88465-835-4
  7. Махов Б.Ф., Статья «Мировой эфир» Д.И. Менделеева и его место в Периодической системе», в журнале РАЕ «Фундаментальные исследования», 2008, № 3, с. 25-28
  8. Махов Б.Ф., Статья «Физическая природа металлов в свете колебательной модели атома», в журнале РАЕ «Фундаментальные исследования», 2008, № 3, с. 29-37
  9. Ландау Л.Д., Лифшиц Е.М. «Квантовая механика. Нерелятивистская теория», М.: Наука, 1974 (3-е изд). стр. 293. и 1989 (4-е изд). стр. 302
  10. Махов Б.Ф., книга "О модели нейтрального атома и путях выхода из кризиса в атомной физике» (подготовлена к печати).
  11. Махов Б.Ф., книга «Трехмерная СК-ПСА» (подготовлена к печати).
  12. Бронштейн И.Н., Семендяев К.А., Справочник по математике для инженеров и учащихся втузов. М.: Наука, Гл.ред. ФМЛ, 1986 (13е,испр), стр.127
  13. Статья "Тонкой структуры постоянная", Физический энциклопедический словарь - ФЭС, с.763

Библиографическая ссылка

Махов Б.Ф. ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И. МЕНДЕЛЕЕВА – НОВАЯ ФОРМУЛИРОВКА И МАТЕМАТИЧЕСКОЕ ВЫРАЖЕНИЕ ЗАКОНА // Успехи современного естествознания. – 2008. – № 9. – С. 24-29;
URL: http://natural-sciences.ru/ru/article/view?id=10547 (дата обращения: 17.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический закон был открыт на основе характеристики атома – относительной атомной массы .

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периодыдруг под другом., так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.
В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор .
В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием .

Но гениальность Дмитрия Ивановича Менделеева и его открытия - не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц. Теория строения атома подтвердила правотуМенделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I до VII , а в формулах летучих водородных соединений уменьшается от IV до I .

Основные принципы построения периодической системы.

Признак сравнения

Д.И.Менделеев

1. Как устанавливается последовательность элементов по номерам? (Что положено в основу п.с.?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Ar – K, Co – Ni, Te – I, Th - Pa

2. Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

3. Принцип объединения элементов в периоды.


Close