Впервые проблема устойчивости сжатых стержней была поставлена . Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

Предположим, что шарнирно закрепленный по концам прямой стержень, сжатый силой P = P k , был выведен некоторой горизонтальной силой из состояния прямолинейного равновесия и остался изогнутым после устранения горизонтальной силы (рис. 13.4). Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:

Совмещая начало координат с центром нижнего сечения, направим ось у в сторону прогибов стержня, а ось х - по оси стержня.

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

Но, как следует из рис. 13.4, при выбранном направлении осей у // <0, поэтому знаки левой и правой частей уравнения (17.2) будут одинаковыми, если в правой части сохранить знак минус. Если изменить направление оси у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

.

Полагая α 2 =Рк /EI , получаем линейное однородное дифференциальное уравнение

,

общий интеграл которого

Здесь A и B - постоянные интегрирования, определяемые из условий закрепления стержня, так называемых граничных или краевых условий.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

.

Константа A , представляющая собой наибольший прогиб стержня, не может быть равна нулю, так как при A =0 возможна только прямолинейная форма равновесия, а мы ищем условие, при котором возможна и криволинейная форма равновесия. Поэтому должно быть sin α l =0. Отсюда следует, что криволинейные формы равновесия стержня могут существовать, если α l принимает значения π ,2π ,.n π . Величина α l не может быть равна нулю, так как это решение соответствует случаю

Приравнивая α l = n π и подставляя

получаем

.

Выражение (13.5) называется формулой Эйлера . По ней можно вычислить критическую силу Рк при выпучивании стержня в одной из двух главных его плоскостей, так как только при этом условии справедливо уравнение (13.2), а следовательно и формула (13.5).

Выпучивание стержня происходит в сторону наименьшей жесткости, если нет специальных устройств, препятствующих изгибу стержня в этом направлении. Поэтому в формулу Эйлера надо подставлять I min - меньшей из главных центральных моментов инерции поперечного сечения стержня.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Величина критической силы, определяемая формулой (13.5), зависит от коэффициента n . Выясним геометрический смысл этого коэффициента.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α =π n /l в выражение (13.4) принимает вид

.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

.

Предположим, что стойка с одним защемленным и другим свободным концом (рис. 13.8) сжата силой Р .

Если сила P = P k , то кроме прямолинейной может существовать также и криволинейная форма равновесия стойки (пунктир на рис. 13.8).

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

Подчиняя это решение очевидным граничным условиям: y =0 при x =0 и y / =0 при x = l , получаем B =0, A α cos α l = 0.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

,

которой соответствует изгиб стержня по синусоиде

.

Значениям α l =3π /2, α l =5π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

В качестве второго примера рассмотрим стойку с одним защемленным и вторым шарнирно опертым концом (рис. 13.9). Вследствие искривления оси стержня при P = P k со стороны шарнирной опоры возникает горизонтальная реактивная сила R . Поэтому изгибающий момент в текущем сечении стержня

.α :

Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора. Нетрудно поверить, что наименьший, отличный от нуля, корень этого уравнения α l = 4.493=1.43 π .

Принимая α l = 1.43 π , получаем следующее выражение для критической силы:

Здесь μ =1/n - величина, обратная числу полуволн n синусоиды, по которой изогнется стержень. Постоянная μ называется коэффициентом приведения длины, а произведение μ l - приведенной длиной стержня. Приведенная длина есть длина полуволны синусоиды, по которой изгибается этот стержень.

Случай шарнирного закрепления концов стержня называется основным. Из сказанного выше следует, что критическая сила для любого случая закрепления стержня может быть вычислена по формуле для основного случая при замене в ней действительной длины стержня его приведенной длиной μ l .

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Понятие об устойчивости и критической силе. Проектировочный и проверочный расчеты.

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость - способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) - нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y - прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение - формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая - в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр - приведенная длина стержня; l - фактическая длина стержня; μ - коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней - проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

Исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

По справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

Сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины - искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений:

Обычно в первой попытке принимают φ 1 = 0,5…0,6 и определяют площадь сечения в первом приближении

По найденной площади A1 подбирают сечение и вычисляют гибкость стержня в первом приближении λ1. Зная λ, находят новое значение φ′1;

Выбор материала и рациональной формы сечения.

Выбор материала . Так как в формулу Эйлера из всех механических характеристик входит лишь модуль Юнга, то для повышения устойчивости стержней большой гибкости нецелесообразно применять высокопрочные материалы, так как модуль Юнга для всех марок сталей примерно одинаков.

Для стержней малой гибкости применение высокосортных сталей оправдано, так как с повышением предела текучести у таких сталей повышаются и критические напряжения, а значит и запас устойчивости.

Определим критическую силу для центрально сжатого стержня, шарнирно опертого по концам (рис. 13.4). При небольших значениях силы Р ось стержня остается прямой и в его сечениях возникают напряжения центрального сжатия о = P/F. При критическом значении силы Р = Р становится воз- можной искривленная форма равновесия стержня.

Возникает продольный изгиб. Изгибающий момент в произвольном сечении х стержня равен

Важно заметить, что изгибающий момент определяется для деформированного состояния стержня.

Если предположить, что напряжения изгиба, возникающие в поперечных сечениях стержня от действия критической силы, не превосходят предел пропорциональности материала о пц и прогибы стержня малы, то можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня (см. § 9.2)

Введя обозначение

получим вместо (13.2) следующее уравнение:

Общее решение этого уравнения имеет вид

Это решение содержит три неизвестных: постоянные интегрирования Cj, С 2 и параметр к, так как величина критической силы также неизвестна. Для определения этих трех величин имеются только два граничных условия: и(0) = 0, v(l ) = 0. Из первого граничного условия следует, что С 2 = 0, а из второго получим

Из этого равенства следует, что либо С { = 0, либо sin kl = 0. В случае С, = 0 прогибы во всех сечениях стержня равны нулю, что противоречит исходному предположению задачи. Во втором случае kl = пк, где п - произвольное целое число. С учетом этого по формулам (13.3) и (13.5) получим

Рассмотренная задача является задачей на собственные значения. Найденные числа к = пк/1 называются собственными числами, а соответствующие им функции - собственными функциями.

Как видно из (13.7), в зависимости от числа п сжимающая сила Р (я) , при которой стержень находится в изогнутом состоянии, теоретически может принимать целый ряд значений. При этом согласно (13.8) стержень изгибается по п полуволнам синусоиды (рис. 13.5).

Наименьшее значение силы будет при п = 1:

Эта сила носит название первой критической силы. При этом kl = к и изогнутая ось стержня представляет собой одну полуволну синусоиды (рис. 13.5, а):

где С{ 1} =/ - прогиб в середине длины стержня, что следует из (13.8) при п = 1 их = 1/2.

Формула (13.9) была получена Леонардом Эйлером и называется формулой Эйлера для критической силы.

Все формы равновесия (рис. 13.5), кроме первой (п = 1), неустойчивы и потому не представляют практического интереса. Формы равновесия, соответствующие п - 2, 3, ..., будут устойчивыми, если в точках перегиба упругой линии (точки С и С" на рис. 13.5, б, в) ввести дополнительные шарнирные опоры.


Полученное решение обладает двумя особенностями. Во-первых, решение (13.10) не является единственным, так как произвольная постоянная Cj (1) =/ осталась неопределенной, несмотря на использование всех граничных условий. В результате прогибы оказались определены с точностью до постоянного множителя. Во- вторых, это решение не дает возможности описать состояние стержня при Р > Р кр. Из (13.6) следует, что при Р = Р кр стержень может иметь искривленную форму равновесия при условии kl = к. Если же Р > Р кр, то kl Ф п, и тогда должно быть Cj (1) = 0. Это означает, что v = 0, то есть стержень после искривления при Р = Р кр вновь приобретает прямолинейную форму при Р > Р. Очевидно, что это противоречит физическим представлениям об изгибе стержня.

Эти особенности связаны с тем, что выражение (13.1) для изгибающего момента и дифференциальное уравнение (13.2) получены для деформированного состояния стержня, в то время как при постановке граничного условия на конце х = / осевое перемещение и в этого конца (рис. 13.6) вследствие изгиба не учитывалось. Действительно, если пренебречь укорочением стержня за счет центрального сжатия, то нетрудно представить, что прогибы стержня будут иметь вполне определенные значения, если задать величину и в.

Из этого рассуждения становится очевидным, что для определения зависимости прогибов от величины сжимающей силы Р необходимо вместо граничного условия v(l) = 0 использовать уточненное граничное условие v(l - и в) = 0. При этом установлено, что если сила превосходит критическое значение всего на 1+2%, прогибы становятся достаточно большими и необходимо пользоваться точным нелинейным дифференциальным уравнением продольного изгиба

Это уравнение отличается от приближенного уравнения (13.4) первым слагаемым, представляющим собой точное выражение для кривизны изогнутой оси стержня (см. § 9.2).

Решение уравнения (13.11) достаточно сложно и выражается через полный эллиптический интеграл первого рода.

Продольный изгиб

При расчетах на прочность подразумевалось , что равновесие конструкции под действием внешних сил является устойчивым . Однако выход конструкции из строя может произойти из-за того, что равновесие конструкций в силу тех или иных причин окажется неустойчивым . Во многих случаях, кроме проверки прочности, необходимо производить еще проверку устойчивости элементов конструкций.

Состояние равновесия считается устойчивым , если при любом возможном отклонении системы от положения равновесия возникают силы, стремящиеся вернуть её в первоначальное положение.

Рассмотрим известные виды равновесия.

Неустойчивое равновесное состояние будет в том случае, когда хотя бы при одном из возможных отклонений системы от положения равновесия возникнут силы, стремящиеся удалить её от начального положения.

Состояние равновесия будет безразличным , если при разных отклонениях системы от положения равновесия возникают силы, стремящиеся вернуть её в начальное положение, но хотя бы при одном из возможных отклонений система продолжает оставаться в равновесии при отсутствии сил, стремящихся вернуть её в начальное положение или удалить от этого положения.

При потере устойчивости характер работы конструкции меняется, так как этот вид деформации переходит в другой, более опасный, способный привести её к разрушению при нагрузке значительно меньшей, чем это следовало из расчета на прочность . Очень существенно, что потеря устойчивости сопровождается нарастанием больших деформаций , поэтому явление это носит характер катастрофичности.

При переходе от устойчивого равновесного состояния к неустойчивому конструкция проходит через состояние безразличного равновесия. Если находящейся в этом состоянии конструкции сообщить некоторое небольшое отклонение от начального положения, то по прекращении действия причины, вызвавшей это отклонение, конструкция в исходное положение уже не вернется, но будет способна сохранить приданное ей, благодаря отклонению, новое положение.

Состояние безразличного равновесия, представляющее как бы границу между двумя основными состояниями – устойчивым и неустойчивым, называется критическим состоянием. Нагрузка, при которой конструкция сохраняет состояние безразличного равновесия, называется критической нагрузкой .

Эксперименты показывают, что обычно достаточно немного увеличить нагрузку по сравнению с её критическим значением, чтобы конструкция из-за больших деформаций потеряла свою несущую способность, вышла из строя. В строительной технике потеря устойчивости даже одним элементом конструкции вызывает перераспределение усилий во всей конструкции и нередко влечет к аварии.

Изгиб стержня,связанный с потерей устойчивости, называется продольным изгибом .

Критическая сила. Критическое напряжение

Наименьшая величина сжимающей силы, при которой первоначальная форма равновесия стержня – прямолинейная становится неустойчивой – искривленной, называется критической.

При исследовании устойчивости форм равновесия упругих систем первые шаги были сделаны Эйлером .

В упругой стадии деформирования стержня при напряжениях, не превышающих предел пропорциональности , критическая сила вычисляется по формуле Эйлера :

где I min минимальный момент инерции сечения стержня (обусловлено тем, что изгиб стержня происходит в плоскости с наименьшей жесткостью), однако исключения могут быть только в случаях, когда условия закрепления концов стержня различны в разных плоскостях, - геометрическая длина стержня, μ – или (зависит от способов закрепления концов стержня), Значения μ приведены под соответствующей схемой закрепления стержней

Критическое напряжение вычисляется следующим образом

, где гибкость стержня,

а радиус инерции сечения.

Введем понятие предельной гибкости .

Величина λ пред зависит только от вида материала:

Если у стали 3 Е =2∙10 11 Па, а σ пц =200МПа , то предельная гибкость

Для дерева (сосна, ель) предельная гибкость λпред=70, для чугуна λпред=80

Таким образом, для стержней большой гибкости λ≥λ пред критическая сила определяется по формуле Эйлера.

В упругопластической стадии деформирования стержня, когда значение гибкости находится в диапазоне λ 0 ≤λ≤λ пр, (стержни средней гибкости) расчет проводится по эмпирическим формулам , например, можно использовать формулу Ясинского Ф.С. Значения введенных в нее параметров определены эмпирически для каждого материала.

σ к =а-bλ, или F кр = A (a b λ)

где a и b – постоянные, определяемые экспериментальным путем ().Так, для стали3 а =310МПа, b =1,14МПа.

При значениях гибкости стержня 0≤λ≤λ 0 (стержни малой гибкости) потеря устойчивости не наблюдается.

Таким образом, пределы применимости формулы Эйлера применяется только в зоне упругих деформаций.

Условие устойчивости. Типы задач при расчете на устойчивость.

Условием устойчивости сжатого стержня является неравенство:

Здесь допускаемое напряжение по устойчивости [σуст ] — не постоянная величина , как это было в условиях прочности, а зависящая от следующих факторов :

1) от длины стержня, от размеров и даже от формы поперечных сечений,

2) от способа закрепления концов стержня,

3) от материала стержня.

Как и всякая допускаемая величина, уст ] определяется отношением опасного для сжатого стержня напряжения к коэффициенту запаса. Для сжатого стержня опасным является так называемое критическое напряжение σкр , при котором стержень теряет устойчивость первоначальной формы равновесия .

Поэтому

Величину коэффициента запаса в задачах устойчивости принимают несколько большей, чем значение , то есть если k =1÷2, то k уст =2÷5 .

Допускаемое напряжение по устойчивости можно связать с допускаемым напряжением по прочности:

В этом случае ,

где σт – опасное с точки зрения прочности напряжение (для пластичных материалов это предел текучести, а для хрупких – предел прочности на сжатие σвс ).

Коэффициент φ<1 и потому называется коэффициентом снижения основного допускаемого напряжения , то есть [σ] по прочности , или иначе

С учетом сказанного условие устойчивости сжатого стержня принимает вид:

Численные значения коэффициента φ выбираются из таблиц в зависимости от материала и величины гибкости стержня , где:

μ коэффициент приведенной длины (зависит от способов закрепления концов стержня), - геометрическая длина стержня,

i радиус инерции поперечного сечения относительно той из главных центральных осей сечения, вокруг которой будет происходить поворот поперечных сечений после достижения нагрузкой критического значения.

Коэффициент φ изменяется в диапазоне 0≤φ≤1 , зависит,как уже говорилось, как от физико-механических свойств материала, так и от гибкости λ. Зависимости между φ и λ для различных материалов представляются обычно в табличной форме с шагом ∆λ=10.

При вычислении значений φ для стержней, имеющих значения гибкости не кратные числу 10, применяется правило линейной интерполяции .

Значения коэффициента φ в зависимости от гибкости λ для материалов

На основании условия устойчивости решаются три вида задач :

  1. Проверка устойчивости .
  2. Подбор сечения .
  3. Определение допускаемой нагрузки (или безопасной нагрузки, или грузоподъемности стержня: [F ]=φ[σ]А .

Наиболее сложным оказывается решение задачи о подборе сечения , поскольку необходимая величина площади сечения входит и в левую, и в правую часть условия устойчивости:

Только в правой части этого неравенства площадь сечения находится в неявном виде: она входит в формулу радиуса инерции , который в свою очередь включен в формулу гибкости , от которой зависит значение коэффициента продольного изгиба φ . Поэтому здесь приходится использовать метод проб и ошибок, облеченный в форму способа последовательных приближений :

1 попытка : задаемся φ1 из средней зоны таблицы , находим , определяем размеры сечения, вычисляем , затем гибкость , по таблице определяем и сравниваем со значением φ1 . Если , то.

Формула Эйлера : , где Е – модуль Юнга; – минимальный главный центральный момент инерции поперечного сечения стержня (очевидно, что при потере устойчивости изгиб стержня произойдет в плоскости наименьшей изгибной жесткости); – коэффициент приведения длины, зависящий от формы потери устойчивости; l – длина стержня. Произведение - приведенная длина стержня .

Формула Эйлера для шарнирно-опертого стержня, сжатого по концам

Для шарнирно опертого стержня, сжатого по концам, формула Эйлера для определения : (коэффициент приведения длины ).

Основной случай потери устойчивости – случай, когда при закреплении концов стержня и приложении нагрузки форма потери устойчивости представляет собой одну полуволну синусоиды (рис. 12.2, а).

Некоторые другие способы закрепления концов стержня (нагрузка по-прежнему приложена по торцам) легко могут быть приведены к основному случаю потери устойчивости путем сопоставления формы изогнутой оси с формой потери устойчивости шарнирно опертого стержня.

Формула Эйлера для стержня с защемленным и свободным концами

При потере устойчивости стержень с жестко защемленным одним и свободным другим концом изогнется, как показано на (рис. 12.2, б). Форма потери устойчивости этого стержня представляет собой четверть синусоиды. Приведенная длина равна (полуволна синусоиды имеет длину ), а эйлерова сила в четыре раза меньше, чем для основного случая. Формула Эйлера для стержня с защемленным и свободным концами: .

Формула Эйлера для стержня с защемленными концами

Для стержня, оба конца которого жестко защемлены, форма потери устойчивости такова, что одна полуволна синусоиды занимает половину длины стержня (рис. 12.2, в). Поэтому приведенная длина стержня равна (), а формула эйлеровой нагрузки .

Критической () принято называть истинную, а эйлеровой () – теоретическую нагрузку, при которой происходит потеря .

Формула Эйлера получена из предположения, что в момент потери устойчивости напряжения сжатия в стержне не превышают предела пропорциональности : . Модуль Юнга (Е) в формуле Эйлера свидетельствует о том, что вплоть до момента потери устойчивости выполнялся . Если потеря устойчивости происходит при напряжении меньшем, чем , то .

Для стержней, теряющих устойчивость при напряжении, превышающем предел пропорциональности (), использование формулы Эйлера принципиально неправильно и крайне опасно, поскольку критическая нагрузка (истинная нагрузка, при которой происходит потеря устойчивости) меньше эйлеровой нагрузки: .

Пределы применимости формулы Эйлера

Пределы применимости формулы Эйлера можно установить, предварительно введя понятие гибкости стержня. Определим эйлеровы напряжения , исходя из формулы Эйлера:

.


Close