Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

гистология ткань генетический

Изучение основ гистологии являются важным звеном в познании строения тела человека, так как ткани представляют собой один из уровней организации живой материи, основу формирования органов. История развития гистологии в конце XIX в. в России была тесно связана со становлением университетского образования.

Целью работы является определение гистологии, как науки.

Поставленная цель определяет задачи исследования:

1. Изучить объекты и методы исследования гистологии;

2. Обозначить исторические этапы развития гистологии.

1. Определение гистологии как науки

Гистология - (от греч. histos - ткань, logos - учение) - наука о строении, развитии и жизнедеятельности тканей человека и животных.

Из этого определения следует, что главным предметом изучения гистологии является ткани. В организме человека и животных имеется 5 основных тканей:

· Нервная;

· Мышечная;

· Эпителиальная;

· Соединительная;

каждая, из которых имеет свои особенности.

Ткани представляют собой систему клеток и неклеточных структур, объединившихся и специализировавшихся в процессе филогенеза и онтогенеза для выполнения важнейших функций в организме.

Таким образом, основой развития и строения тканей являются клетки и их производные - неклеточные структуры.

Гистология, как учебная дисциплина, включает в себя следующие разделы:

· цитологию;

· эмбриологию;

· общую гистологию; (изучает строение и функции тканей);

· частную гистологию (изучает строение и функции тканей).

Предметом общей гистологии (собственно учение о тканях) являются как общие закономерности, так и отличительные особенности строения конкретных тканей, предметом частной гистологии - закономерности жизнедеятельности и взаимодействия тканей в конкретных органах.

Актуальными задачами гистологии является:

· разработка общей теории гистологии, отражающей эволюционную динамику тканей и закономерности эмбрионального и постнатального гистогенеза;

· изучение гистогенеза как комплекса координированных во времени и пространстве процессов пролиферации, дифференциации, детерминации, интеграции, адаптивной изменчивости, программированной гибели клеток и др.;

· выяснение механизмов гомеостаза и тканевой регуляции (нервной, эндокринной, иммунной), а также возрастной динамики тканей;

· изучение закономерностей реактивности и адаптивной изменчивости клеток и тканей при действии неблагоприятных экологических факторов и в экстремальных условиях функционирования и развития, а также при трансплантации;

· разработка проблемы регенерации тканей после повреждающих воздействий и методов тканевой заместительной терапии;

· раскрытие механизмов молекулярно-генетической регуляции клеточной дифференцировки, наследования генетического дефекта развития систем человека, разработка методов генной терапии и трансплантации стволовых эмбриональных клеток;

· выяснение процессов эмбрионального развития человека, критических периодов развития, воспроизводства и причин бесплодия.

Но основной задачей гистологии, как и других биологических наук, является выявление сущности жизни, структурной организации процессов жизнедеятельности для целенаправленного воздействия на них, что очень важно для врачебной практики. Исходя из основной задачи, гистология исследует закономерности образования, механизмы регуляции процессов морфогенеза тканей и роль в этих процессах нервной, эндокринной и иммунной систем. Важнейшими задачами, решаемыми гистологией, являются изучение клеточной и тканевой совместимости при переливании крови, трансплантации тканей и органов. Гистология тесно связана с другими медико-биологическими науками - биологией, анатомией, физиологией, биохимией, патологической анатомией и клиническими дисциплинами. Кроме того, современная гистология в большой степени использует достижения физики, химии, математики, кибернетики, что обусловливает ее тесную связь с этими науками.

2. Объекты исследования гистологии

Объекты исследования подразделяются на:

· живые (клетки в капле крови, клетки в культуре и другие);

· мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

Для изучения живых микрообъектов применяют методы вживления прозрачных камер с изучаемыми клетками в организм животного, трансплантацию клеток в жидкость передней камеры глаза и наблюдение за их жизнедеятельностью через прозрачную роговицу глаза. Наиболее распространенными методами прижизненного исследования структур являются культуры клеток и тканей - суспензионные (взвесь в жидкой среде) и монослойные (образование сплошного слоя на стекле). Для длительного поддержания клеток в культуре требуется создание оптимальной температуры, соответствующей температуре тела, и специальной питательной среды (плазма крови, эмбриональный экстракт, стимуляторы роста) сохранять основные показатели жизнедеятельности: рост, размножение, движение, дифференцировку.

Для изучения мертвых, или фиксированных, клеток и тканей они должны быть, как правило, подвергнуты специальной обработке, чтобы получить гистологический препарат для исследования в световом или электронном микроскопе.

Гистологический препарат может быть в виде:

· тонкого окрашенного среза органа или ткани;

· мазка на стекле (например, мазок крови, костного мозга);

· отпечатка на стекле с разлома органа (например, слизистой оболочки ротовой полости, влагалища и др.);

· тонкого пленочного препарата (например, брюшины, плевры, мозговой оболочки).

3. Приготовление гистологических препаратов

Гистологический препарат любой формы должен отвечать следующим требованиям:

· сохранять прижизненное состояние структур;

· быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

· быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

· препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

Выделяют следующие этапы приготовления гистологического препарата.

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты:

· забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа;

· забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани;

· толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка;

· обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО 2 , жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии - монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом. После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Методы исследования

Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

· световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

· ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

· люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

· фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратах;

· поляризационная микроскопия для изучения, главным образом, волокнистых структур;

· микроскопия в темном поле для изучения живых объектов;

· микроскопия в падающем свете для изучения толстых объектов;

· электронная микроскопия (разрешающая способность до 0,1-0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) - выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. Исторические этапы развития науки

В истории развития гистологии условно выделяют три периода:

· Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки;

· Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге "Микрография", в-третьих, впервые ввел термин "клетка" ("целлюля"). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов. Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках "протоплазмы" (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клеток цитогенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838-1839 гг.) в виде трех постулатов:
- все растительные и животные организмы состоят из клеток;
- все клетки развиваются по общему принципу из цитобластемы;
- каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения клеточной теории актуальны до настоящего времени, хотя формулируются по-иному.

Современные положения клеточной теории:

· клетка является наименьшей единицей живого;

· клетки животных организмов сходны по своему строению;

· размножение клеток происходит путем деления исходной клетки;

· многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

Клеточный центр Гертвиг, 1875 г.;

Сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

Митохондрии Бенда, 1898 г.

· Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов:

· цито- и гистохимии;

· гисторадиографии;

· других вышеперечисленных современных методов.

При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

Выводы

1. Основными объектами является живые или мертвые ткани. Методами исследования является микроскоп, гистохимические и цитохимические методы, гистоавторадиография, дифференциальное центрифугирование, интерферометрия, иммуноморфологические методы и культивирование клеток.

2. В истории развития гистологии существует три этапа: домикроскопический период, микроскопический и современный.

Список литературы

1. Радостина А. И., Юрина Н. И. Гистология: Учебник. - М.: Медицина, 1995. - 256с.

2. Хэм А., Кормак Д. Гистология, тт. 1-5. - М., 1982-1983.

3. Размещено на Allbest.ru

...

Подобные документы

    Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.

    реферат , добавлен 01.12.2011

    Гистология - наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.

    презентация , добавлен 23.03.2013

    История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.

    презентация , добавлен 20.11.2014

    История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат , добавлен 07.01.2012

    Гистология как наука о происхождении, строении, функции и регенерации тканей живых организмов. Эволюционная эмбриология, развитие на примере млекопитающих. Критический период как период повышенной чувствительности организма к действию внешних факторов.

    реферат , добавлен 18.01.2010

    Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация , добавлен 08.11.2013

    История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.

    презентация , добавлен 12.11.2015

    Роль эндокринной системы в регуляции основных процессов жизнедеятельности животных и человека. Свойства, классификация, функции, и биологическая роль гормонов эндокринных желез. Анализ проблемы йоддефицитных заболеваний человека и животных в России.

    курсовая работа , добавлен 02.03.2010

    Исследование отличительных свойств эпителиальных тканей. Изучение особенностей развития, строения и жизнедеятельности тканей организмов животных и человека. Анализ основных видов однослойного эпителия. Защитная и всасывающая функции эпителиальной ткани.

    презентация , добавлен 23.02.2013

    Образование тканей из зародышевых листков (гистогенез). Понятие как стволовых клеток как полипотентных клеток с большими возможностями. Механизмы и классификация физиологической регенерации: внутриклеточная и репаративная. Виды эпителиальных тканей.

Ткань – это система клеток и межклеточного вещества, объединенных единством строения, функции и происхождения. В организме человека различают 4 вида тканей: эпителиальные, соединительные, мышечные, нервная. Ткани состоят из клеток и межклеточного вещества, соотношение которых различно. Межклеточное вещество обычно гелеобразное и может содержать волокна.

Эпителиальная ткань (рис. 2.2) представлена клетками-эпителиоцитами, образующими сплошные пласты, в которых нет сосудов. Питание эпителия происходит путем диффузии питательных веществ через опорную базальную мембрану, отделяющую эпителий от подлежащей рыхлой соединительной ткани.

Покровный эпителий бывает однослойным (плоским, кубическим, многорядным мерцательным, цилиндрическим) и многослойным (ороговевающим, неороговевающим, переходным).

Однослойный плоский эпителий выстилает серозные оболочки, альвеолы легких. В камерах сердца, сосудах он уменьшает трение протекающих жидкостей и называется эндотелием. Многорядный мерцательный эпителий покрывает слизистые оболочки дыхательных путей, маточные трубы и состоит из ресничных и бокаловидных слизистых клеток, ядра которых расположены на разных уровнях. Реснички - выросты цитоплазмы на свободном конце столбчатых клеток этого эпителия. Они постоянно колеблются, препятствуя попаданию любых чужеродных частиц в легкие, продвигая яйцеклетку в маточных трубах. Кубический эпителий встречается в собирательных канальцах почек, выстилает протоки поджелудочной железы. Цилиндрический эпителий представлен высокими узкими клетками с функциями секреции и всасывания. Иногда на свободной поверхности клеток имеется щеточная кайма, состоящая из микроворсинок, увеличивающих поверхность всасывания (в тонкой кишке). Бокаловидные клетки, расположенные между цилиндрическими эпителиоцитами, выделяют слизь, защищающую слизистую желудка от вредного действия желудочного сока и облегчающую прохождение пищи в кишечнике.

Железистый эпителий образует железы (потовые, сальные и др), выполняющие функции выделения. Железы бывают многоклеточными (печень, гипофиз) и одноклеточными (бокаловидная клетка мерцательного эпителия, выделяющая слизь). Экзокринные железы расположены в коже или полых органах. Они обычно имеют выводные протоки и выводят секрет или наружу (пот, кожное сало, молоко), или в полость органа (бронхиальная слизь, слюна). Их секреты оказывают местное воздействие. Экзокринные железы делятся на простые и сложные в зависимости от того, ветвится или нет их выводной проток. Эндокринные железы не имеют выводных протоков, выделяют свои гормоны (адреналин и др.) в кровь и лимфу, влияя на весь организм.



Многослойный эпителий состоит из нескольких рядов клеток. Только нижний слой клеток расположен на базальной мембране. Эпидермис (многослойный плоский ороговевающий эпителий) покрывает кожу. Его нижний слой представлен ростковыми клетками, среди которых находятся пигментные клетки меланоциты с черным пигментом меланином, придающим цвет коже. Слизистые оболочки выстилает многослойный плоский неороговевающий эпителий (полость рта, глотка, пищевод и др.). Переходный эпителий может иметь разное количество слоев в зависимости от степени наполнения органа мочой (мочевыводящие пути).

Соединительная ткань составляет 50% веса тела, разнообразна по строению и функциям, широко распространена в организме.

Собственно соединительная ткань образует строму и капсулы внутренних органов, находится в коже, связках, сухожилиях, фасциях, сосудистых стенках, оболочках мышц и нервов. В организме эта ткань выполняет пластическую, защитную, опорную и трофическую функции. Она состоит из клеток и межклеточного вещества, содержащего волокна и основное вещество. Главная клетка – подвижный фибробласт – образует основное вещество и выделяет волокна: коллагеновые, эластические, ретикулиновые. Различают собственно соединительную ткань, хрящевую и костную.

Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью с функциями опорно-механической, защитной (плотная волокнистая соединительная ткань, хрящевая, костная). Трофическую (питательную) функцию выполняют рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа.

Рыхлая волокнистая соединительная ткань (рис. 2.3.) содержит фибробласты, фиброциты и др. клетки и волокна, по-разному расположенные в основном веществе в зависимости от строения и функции органа. Эта ткань составляет строму паренхиматозных органов, сопровождает кровеносные сосуды, участвует в иммунных, воспалительных реакциях, заживлении ран.

Плотная волокнистая соединительная ткань может быть неоформленной и оформленной в зависимости от упорядоченности расположения ее волокон. В сетчатом слое кожи соединительно-тканные волокна беспорядочно переплетаются. В сухожилиях, связках, фасциях эти волокна образуют пучки, расположенные в определенном направлении и придающие этим образованиям прочность (рис.2.4).

Ретикулярная соединительная ткань, состоящая из ретикулярных клеток и волокон, образует основу кроветворных и иммунных органов (красного костного мозга, лимфатических узлов и фолликулов, селезенки, вилочковой железы). Основная ее клетка – многоотростчатый ретикулоцит, выделяющий тонкие ретикулиновые волокна. Отростки клеток соединяются друг с другом с образованием сети, в петлях которой расположены кроветворные клетки и форменные элементы крови.

Жировая соединительная ткань образует подкожно-жировой слой, расположена под брюшиной, в сальниках. Ее клетки – шаровидные липоциты - накапливают жировые капли. Жировая ткань – депо важнейшего источника энергии жира и связанной с ним воды, имеет хорошие теплоизоляционные свойства.

Хрящевая ткань состоит из хондроцитов, образующих группы из двух-трех клеток, и основного вещества – плотного, упругого геля. Хрящ не имеет сосудов, питание осуществляется из капилляров покрывающей его надхрящницы. Различают три разновидности хряща. Гиалиновый хрящ – полупрозрачный, гладкий, плотный, блестящий. Он почти не содержит волокон, образует суставные, реберные хрящи, хрящи гортани, трахеи, бронхов. Волокнистый (фиброзный) хрящ имеет много прочных коллагеновых волокон и образует фиброзные кольца межпозвоночных дисков, внутрисуставные диски, мениски, лобковый симфиз. Эластический хрящ желтоват, содержит множество спиралевидных эластических волокон, обуславливающих упругость. Из него состоят некоторые хрящи гортани, ушная раковина и др.

Костная ткань твердая и прочная, образует скелет. Состоит из зрелых многоотростчатых клеток – остеоцитов, молодых – остеобластов, вмонтированных в твердое межклеточное вещество, содержащее минеральные соли. При повреждении кости остеобласты участвуют в процессах регенерации. Третий вид клеток костной ткани - многоядерные остеокласты способны фагоцитировать (поглощать) межклеточное вещество костной и хрящевой ткани в процессе роста и перестройки кости.

Мышечная ткань обладает возбудимостью, проводимостью и сократимостью. Основная клетка – миоцит. Выделяют три вида мышечной ткани (рис. 2.5). Поперечнополосатая скелетная мышечная ткань образует скелетные мышцы и некоторые внутренние органы (язык, глотку, гортань и др.). Поперечнополосатая сердечная мышечная ткань формирует сердце. Гладкая мышечная ткань расположена в глазном яблоке, стенках сосудов и полых внутренних органов (в желудке, кишечнике, трахее, бронхах и др.).

Скелетная мышечная ткань состоит из многоядерных, поперечно счерченных мышечных волокон длиной до 4-10 см, оболочка которых по электрическим свойствам похожа на мембрану нервных клеток. Волокна содержат специальные сократительные органеллы, миофибриллы - продольные нити, способные при возбуждении укорачиваться. Миофибриллы образованы сократительными белками – актином и миозином с разными светопреломляющими и физико-химическими свойствами, что обуславливает чередование темных и светлых поперечных полосок (дисков) при микроскопии этой мышечной ткани. Цитоплазма мышечного волокна содержит эндоплазматическую сеть. Ее мембраны связаны с оболочкой клетки и активно транспортируют Са + из цитоплазмы в трубочки эндоплазматической сети. Скелетная мышца при кратковременных нагрузках покрывает свои энергетические потребности как за счет аэробного, так и за счет анаэробного окисления. Сокращение скелетных мышц осуществляется быстро, контролируется сознанием и регулируется соматической нервной системой.

Сердечная мышечная ткань, миокард, состоит из клеток - поперечно исчерченных кардиомиоцитов, которые с помощью вставочных дисков соединяются в функционально единую сеть. Возбуждение, возникающее в каком-либо отделе сердца, распространяется на все мышечные волокна миокарда. Миокард чрезвычайно чувствителен к недостатку кислорода: он покрывает свои энергетические потребности только за счет аэробного окисления. Миокард сокращается непроизвольно и регулируется вегетативной нервной системой.

Гладкая мышечная ткань состоит из тонких одноядерных, не имеющих исчерченности веретенообразных миоцитов длиной до 0,5 см, собранных в пучки или пласты. Их актиновые и миозиновые нити расположены беспорядочно, не образуя миофибрилл. Сокращение гладкой мышечной ткани происходит медленно (кроме мышц, регулирующих ширину зрачка), непроизвольно и контролируется вегетативной нервной системой.

Нервная ткань состоит из нервных клеток – нейронов и нейроглии. Нейроны вырабатывают нервные импульсы, нейрогормоны и медиаторы. Нейроны и нейроглия формируют единую нервную систему, регулирующую взаимосвязь организма с внешней средой, координирующую функции внутренних органов и обеспечивающую целостность организма.

Нейрон имеет тело, отростки и концевые аппараты. По количеству отростков различают нейроны с одним, двумя и несколькими отростками (униполярные, биполярные и мультиполярные - последние у человека преобладают). Коротких ветвящихся отростков – дендритов - у нейрона может быть до 15. Они соединяют нейроны между собой, передавая нервные импульсы. По единственному длинному (до 1,5 м), тонкому, не ветвящемуся отростку – аксону – нервный импульс перемещается от тела нейрона к мышце, железе или другому нейрону (рис.2.6)

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями. Аксоны заканчиваются на мышцах и железах эффекторами - двигательными нервными окончаниями. Рецепторы - чувствительные нервные окончания. В ответ на раздражение в рецепторах возникает процесс возбуждения, который регистрируется как очень слабый переменный электрический ток (нервные импульсы, биотоки). В нервных импульсах закодирована информация о раздражителе. Синапсы - контакты между нервными клетками и их отростками. Передача возбуждения в синапсах и эффекторах происходит с помощью биологически активных веществ – медиаторов (ацетихолина, норадреналина и др.).

Нейроны не делятся митозом в обычных условиях. Восстановительные функции принадлежат нейроглии. Клетки нейроглии выстилают полости головного и спинного мозга (желудочки, каналы), служат опорой для нейронов, окружая их тела и отростки, осуществляют фагоцитоз и обмен веществ, выделяют некоторые медиаторы.

Видео: Основы структурной гистологии Пространств

ОЛЬГА ВАСИЛЬЕВНА ВОЛКОВА, ЮРИЙ КОНСТАНТИНОВИЧ ЕЛЕЦКИЙ
Основы гистологии с гистологической техникой. 2-е издание - Москва: Медицина, 1982.
В учебнике изложены основные сведения по цитологии и общей гистологии. Приведена краткая гистологическая характеристика органных систем. Большое внимание уделено гистологической технике. Введено описание современных методов обработки гистологических препаратов.
Учебник написан в соответствии с программой курса гистологии, утвержденной Главным управлением учебных заведений Министерства здравоохранения СССР, и предназначен для учащихся фельдшерско-лаборантских отделений медицинских училищ.

ПРЕДИСЛОВИЕ

Видео: Цитология. Общие принципы строения клеток. Клеточная теория. Про- и эукариоты

Настоящий учебник по гистологии и гистологической технике написан согласно программе для медицинских училищ. В учебнике излагаются основные положения цитологии и курса общей гистологии и приводятся современные теоретические представления о цитофизиологии и гистофизиологии тканевых структур. В разделе «Цитология» приведены новые данные о структурной организации и функции составных компонентов клетки.
Задача раздела «Краткое описание структуры органных систем» - составить у лаборанта самое общее представление о строении основных органов и систем, чтобы при работе с препаратом он мог определить его принадлежность к той или иной системе и соответственно мог понимать специфику работы и свою задачу. Несомненно, что высококвалифицированный анализ препарата - дело научного работника, однако, как показывает практика, опытный лаборант тоже может оказать большую помощь. В то же время общее знание нормального гистологического строения органов необходимо для будущих занятий по патологической анатомии, ибо согласно учебной программе по этому предмету учащемуся придется производить анализ патологии органов и органных систем. В связи с этими задачами этот раздел в новом издании расширен. Также несколько расширен атлас строения основных систем, который всегда должен быть под рукой лаборанта.
Большая часть учебника в соответствии с программой посвящена гистологической технике. В раздел фиксации внесены ацетон, фиксаторы Бродского и Шабадаша, включен ряд методов, получивших широкое применение в гистологических и патологоанатомических лабораториях за последние годы. Дополнен раздел «Гистохимические методы»: способы выявления адренергических и холинергических компонентов нервной системы, суммарных белков и нейтральных мукополисахаридов - гликопротеидов, более современные методы выявления нуклеиновых кислот и щелочной фосфатазы, дан метод импрегнации кровеносных сосудов по В. В. Куприянову. Расширен раздел электронной микроскопии за счет изложения принципов устройства ультратома и методов приготовления срезов. Описаны (кратко) основные способы применения изотопов в гистологии (гистоавторадиография) и иммуногистохимические методы. Учтены замечания официальных рецензентов и пожелания практических работников лабораторий. Усилено внимание к технике безопасности и предупреждению профессиональной патологии.
Во втором издании учебника приведены новые и частично изменены некоторые прежние рисунки.


Внимание, только СЕГОДНЯ! Понятие о тканях.
Виды тканей.
Строение и функции
эпителиальной ткани.

Понятие и виды тканей

Ткань - это система клеток, сходная по
происхождению, строению и
функциям и межклеточная (тканевая)
жидкость.
Учение о тканях называется
гистологией (греч. histos - ткань, logos
- учение).

Виды тканей:
-эпителиальная
или покровная
-соединительна
я (ткани
внутренней
среды);
- мышечная
- нервная

Эпителиальная ткань

Эпителиальная ткань (эпителий) - это
ткань, покрывающая поверхность кожи,
глаз, а также выстилающая все полости
организма, внутреннюю поверхность
полых органов пищеварительной,
дыхательной, мочеполовой систем,
входит в состав большинства желез
организма. Различают покровный и
железистый эпителий.

Функции эпителия

Покровная
Защитная
Выделительная
Обеспечивает подвижность
внутренних органов в серозных
полостях

Классификация эпителия:

Однослойный:
плоский – эндотелий (все сосуды изнутри) и
мезотелия (все серозные оболочки)
кубический эпителий (почечные канальцы,
протоки слюнных желез)
призматический (желудок, кишечник, матка,
маточные трубы, желчевыносящие протоки)
цилиндрический, реснитчатый и мерцательный
(кишечник, дыхательные пути)
Железистый (одно или многослойный)

Классификация эпителия

Многослойный:
плоский
ороговевающий (эпидермис
кожи) и неороговевающий (слизистые
оболочки, роговица глаза) – являются
покровным
переходный
- в мочевыводящих
структурах: лоханок почек, мочеточники,
мочевой пузырь, стенки которых
подвержены сильному растяжению

Соединительная ткань. Особенности строения.

Соединительная ткань состоит из клеток и
большого количества межклеточного вещества,
включающего основное аморфное вещество и
Соединительная ткань.
волокна.
Особенноститкань
строения.
Соединительная
является тканью
внутренней среды, не соприкасается с наружной
средой и внутренними полостями тела.
Участвует в построении всех внутренних
органов.

Функции соединительной ткани:

механическая, опорная и формообразующая,
составляет опорную системуы организма: кости
скелета, хрящи, связки, сухожилия, образуя
капсулу и строму органов;
защитную, осуществляемую путем
механической защиты (кости, хрящи, фасции),
фагоцитоза и выработки иммунных тел;
трофическую, связанную с регуляцией питания,
обмена веществ и поддержанием гомеостаза;
пластическую, выражающуюся в активном
участии в процессах заживления ран.

Классификация соединительной ткани:

Собственно соединительная ткань:
Рыхлая волокнистая соединительная ткань (окружает
кровеносные сосуды, строма органов)
Плотная волокнистая соединительная ткань бывает оформленная
(связки, сухожилия, фасции, надкостница) и неоформленная
(сетчатый слой кожи)
Со специальными свойствами:
жировая - белая (у взрослых) и бурая (у новорожденных), клетки липоциты
ретикулярная (ККМ, лимфатические узлы, селезенка),
ретикулярные клетки и волокна
пигментная (соски, мошонка, вокруг анального отверстия,
радужка, родинки), клетки - пигментоциты

Скелетная соединительная ткань:
Хрящевая: хондробласты, хондроциты, коллагеновые и
эластические волокна
гиалиновый (суставные хрящи, реберные, щитовидный
хрящ, гортань, бронхи)
эластический (надгортанник, ушная раковина, слуховой
проход)
волокнистый (межпозвоночные диски, лобковый
симфиз, мениски, сустав нижней челюсти, грудиноключичный сустав)
Костная:
грубоволокнистая (у эмбриона, в швах черепа взрослого)
пластинчатая (все кости человека)

Мышечная ткань

Поперечнополосатая мышечная ткань - вся скелетная
мускулатура. Она состоит из длинных многоядерных
цилиндрических нитей, способных к сокращению, а их концы
заканчиваются сухожилиями. СФЕ – мышечное волокно
Гладкая мышечная ткань - находится в стенках полых
органов, кровеносных и лимфатических сосудов, в коже и
сосудистой оболочке глазного яблока. Сокращение гладкой
мышечной ткани не подчинено нашей воле.
Сердечная поперечнополосатая мышечная ткань
кардиомиоциты имеют небольшой размер, одно или два ядра,
обилие митохондрий, не заканчиваются сухожилиями, имеют
особые контакты – нексусы для передачи импульсов. Не
регенерируют

Нервная ткань

Главным функциональным свойством
нервной ткани является возбудимость и
проводимость (передача импульсов). Она
способна воспринимать раздражения из
внешней и внутренней среды и передавать
их по своим волокнам другим тканям и
органам тела. Нервная ткань состоит из
нейронов и вспомогательных клеток –
нейроглии.

Нейроны - это
многоугольные клетки с
отростками, по которым проводятся
импульсы. От тела нейронов отходят
отростки двух видов. Наиболее длинный из
них (единственный), проводящий
раздражение от тела нейрона - аксон.
Короткие ветвящиеся отростки, по
которым импульсы проводятся по
направлению к телу нейрона, называются
дендритами (греч. dendron – дерево).

Виды нейронов по количеству отростков

униполярные – с одним аксоном, редко
встречаются
псевдоуниполярные - аксон и дендрит которых
начинаются от общего выроста тела клетки с
последующим Т-образным делением
биполярные – с двумя отростками (аксон и
дендрит).
мультиполярные – больше 2 отростков

Виды нейронов по функции:

афферентные (чувствительные) нейроны
- несут импульсы от рецепторов к рефлекторному
центру.
вставочные (промежуточные) нейроны
-осуществляют связь между нейронами.
эфферентные (двигательные) нейроныпередают импульсы от ЦНС к эффекторам
(исполнительным органам).

Нейроглия

Нейроглия со всех
сторон окружает
нейроны и составляет
строму ЦНС. Клеток
нейроглии в 10 раз
больше, чем
нейронов, они могут
делиться. Нейроглия
составляет около 80%
массы мозга. Она
выполняет в нервной
ткани опорную,
секреторную,
трофическую и
защитную функции.

Нервные волокна

это отростки (аксоны) нервных клеток, обычно покрытые
оболочкой. Нерв - совокупность нервных волокон,
заключенных в общую соединительнотканную оболочку.
Основным функциональным свойством нервных волокон
является проводимость. В зависимости от строения
нервные волокна делятся на миелиновые (мякотные) и
безмиелиновые (безмякотные). Через равные промежутки
миелиновая оболочка прерывается перехватами Ранвье.
Это сказывается на скорости проведения возбуждения по
нервному волокну. В миелиновых волокнах возбуждение
передается скачкообразно от одного перехвата к другому с
большой скоростью, достигающей 120 м/с. В
безмиелиновых волокнах скорость передачи возбуждения
не превышает10 м/с.

Синапс

От (греч. synaps - соединение, связь) - соединение между
пресинаптическим окончанием аксона и мембраной
постсинаптической клетки. В любом синапсе различают три
основные части: пресинаптическую мембрану, синаптическую
щель и постсинаптическую мембрану.

Страница 2 из 68

РАЗДЕЛ I
КРАТКИЙ ОЧЕРК ИСТОРИИ ГИСТОЛОГИИ
Гистология (от греч. histos - ткань, logos - учение, наука) - наука о развитии, строении и жизнедеятельности тканей животных организмов и человека. Ткани изучают в живом и неживом состоянии. Изучение гистологических объектов, их тончайшей структуры производят с помощью микроскопов (оптический, электронный), которые увеличивают не видимые простым глазом детали строения до нескольких сотен тысяч раз.
Гистологию делят на три основных раздела: цитологию (учение о клетке), общую гистологию (учение о тканях) и частную гистологию (учение о микроскопическом строении органов).
Современная гистология тесно связана с биологическими и медицинскими науками и, в частности, с анатомией, так как гистология изучает мельчайшие детали органов и тканей на микроскопическом и субмикроскопическом уровне. Тесная связь с физиологией выявляется при исследовании взаимозависимости структуры и функции органов и тканей. Форма и функция взаимно обусловлены. Если физиология изучает функции органов, то гистология - функции и структуры отдельных тканей и составных частей тканей, клеток, межклеточного вещества и даже функцию отдельных составных частей клеток (ядро, цитоплазма, митохондрии и т. д.).
В настоящее время в гистологии активно изучается распределение химических веществ в клетках и их структурах, выясняется связь тонкого строения клеток с обменом в них веществ (гистохимия).
Патологическая анатомия и патологическая физиология базируются на данных гистологии. Увидеть и понять патологические изменения в органе невозможно без знания его строения и особенностей функции в норме. В то же время данные этих наук, особенности изменения структуры при той или иной патологии позволяют гистологам глубже понять закономерности процессов, происходящих в клетках, и назначение тех или иных структур. Клиницисты также часто исходят из данных гистологии.
Современная гистология по своей сути является гистофизиологией. Методы гистологического исследования очень разнообразны и совершенны.
Гистология как наука зародилась до создания микроскопа. Еще в античный период делались попытки разделять и описывать составные части организма, но действительное развитие гистологии тесно связано с созданием микроскопа. Одним из первых сконструировал микроскоп в 1619 г. Корнелиус Дреббель. В XVII веке постепенно совершенствующийся микроскоп стали применять для изучения структуры тканей. Роберту Гуку удалось увидеть в растениях ячейки, названные им клетками. Марчелло Мальпиги описал микроскопическое строение кожи, селезенки, почки и других органов.
В 1677 г. Антони Левенгук создал микроскоп, увеличивающий в 300 раз. Такое большое для того времени увеличение позволило ему увидеть клетки крови и их движение, существование множества мельчайших живых существ в капле воды и т. д. Данные, полученные Левенгуком и другими исследователями, были очень интересны, но это были случайные открытия, а не систематическое изучение строения органов и тканей.
В России первые микроскопы изготовлены при Петре I замечательными мастерами И. И. Беляевым и И. П. Кулибиным. М. В. Ломоносов применил микроскоп для химических исследований.
Первыми микроскопистами-биологами и врачами в России были К. Ф. Вольф, М. М. Тереховский, А. М. Шумлянский. К. Ф. Вольф детально изучил развитие органов у эмбрионов и пришел к очень важным для того времени выводам, что при развитии эмбриона из половой клетки происходит новообразование органов, а не простой рост якобы уже готовых, заложенных в яйцеклетке органов, как предполагали в те годы. М. М. Тереховский на основании полученных в опытах данных смог разоблачить неправильные представления о зарождении живых существ из совокупности неодушевленных веществ. А. М. Шумлянский впервые описал тонкое микроскопическое строение почки. К. М. Бэру принадлежит заслуга в описании яйцеклетки млекопитающих и последующих этапов развития человека.
Я. Е. Пуркинье, П. Ф. Горянинов, позднее Маттиас Шлейден и Теодор Шванн и др. получили большой материал о тончайшем строении и развитии тканей и клеток. В 1839 г. немецкий ученый Теодор Шванн, обобщив накопленные данные, сформулировал клеточную теорию. Она постулировала общность клеточного строения животных и растительных организмов и имела большое значение для дальнейшего развития естествознания и соответственно гистологии. Фактически клеточная теория определила направление дальнейшего развития гистологии и оказала мощное стимулирующее воздействие на ее развитие.
Вторая половина XIX века характеризуется дальнейшим усовершенствованием микроскопа, появлением новых методов микроскопических исследований. Стали широко применять консервирующие (фиксирующие) жидкости, которые сохраняли форму и структуру ткани. В этих условиях выявились структуры, невидимые на живых объектах. В гистологическую практику был введен метод окрашивания срезов, что позволило отчетливо выявить отдельные структуры и их детали, так как они по-разному воспринимали красящие вещества. Большую помощь оказало создание и последующее усовершенствование микротома - прибора, позволяющего делать срезы толщиной в несколько микрон*.
К концу XIX века в основном было закончено микроскопическое описание органов и тканей и создана современная микроскопическая анатомия. М. Д. Лавдовский разработал методику импрегнации нервных элементов раствором серебра, а А. С. Догель - окраски метиленовым синим. Благодаря этим методам была исследована наиболее трудная для изучения область - нервная система. Цитологами были получены основные сведения о тонком строении ядра и цитоплазмы, изучен процесс размножения клеток.
В этот период делаются попытки создать окончательную классификацию тканей. Ксавье Биша создал классификацию, выделив 21 ткань, Франц Лейдиг и Альберт Кёлликер систематизировали накопленный материал и, основываясь на морфофизиологическом принципе, свели все многообразие тканей к 4 видам.
Большой вклад в развитие гистологии как науки в этот период внесли русские исследователи. А. И. Бабухин - создатель московской школы гистологов - изучал строение и функции мышечной и нервной ткани.
* Микрон (мкм) - тысячная доля миллиметра.

Гистологи петербургской и казанской школ под руководством А. С. Догеля, М. Д. Лавдовского и затем А. Н. Миславского детально исследовали периферическую и центральную нервную систему. И. Д. Чистяков описал митотическое деление у растительных клеток, а, П. И. Перемежко - у животных.
А. О. Ковалевский и И. И. Мечников изучали формирование тканей в процессе эволюции. Они ввели в науку сравнительно-морфологический метод. Сравнивая строение и развитие животных различных видов, они установили определенные закономерности в эволюционном развитии. Исследованиями А. О. Ковалевского и И. И. Мечникова, развивших эволюционную теорию Чарлза Дарвина, были заложены основы эволюционной гистологии.
С конца XIX века экспериментальный метод стал господствующим в гистологических исследованиях. Путем различных опытов на животных ученые установили значение клеток, межклеточного вещества и тканей для организма, особенности их развития.
Вновь большое внимание уделяется методу прижизненной микроскопии (А. О. Ковалевский). Пионерами в области гистофизиологии с применением прижизненной окраски тканей были Н. А. Хржонщевский, И. И. Мечников, немецкий гистолог Мартин Гейденгайн. И. И. Мечников выяснил роль специальных клеток - фагоцитов. Эти клетки обладают способностью захватывать и уничтожать микробов и инородные вещества, попавшие в организм. Сформулированная И. И. Мечниковым фагоцитарная теория имела колоссальное значение, так как объяснила и разрешила многие общие вопросы жизнедеятельности тканей и клеток.
Методы прижизненной микроскопии нашли широкое применение при изучении патологических изменений органов и тканей. Биологами Д. Н. Насоновым и П. В. Макаровым изучены тончайшие физиологические и патологические изменения структуры клетки.
Идеи нервизма, высказанные С. П. Боткиным, И. М. Сеченовым и развитые И. П. Павловым, во многом определили развитие гистологии. Большой вклад в изучение нервной системы внесли гистологи петербургской и казанской школ и затем выдающийся советский гистолог Б. И. Лаврентьев и его ученики (Е. К. Плечкова, Т. А. Григорьева и др.). Б. И. Лаврентьев, используя метод перерезки нервов, выяснил распределение нервов в органах и принадлежность их к тем или иным отделам нервной системы. Этот метод широко применяется при исследовании трофической роли нервной системы.
Крупнейший русский биолог А. А. Заварзин внес большой вклад в развитие эволюционной гистологии. Он провел большой цикл сравнительно-гистологических исследований крови и соединительной ткани у различных видов животных. Широко разрабатывали вопросы гистофизиологии и гистогенеза соединительной ткани и Н. Г. Хлопин, Г. В. Ясвоин, В. Г. Елисеев, С. И. Щелкунов, А. Н. Студитский.
Большие возможности для гистологии открылись с введением нового метода - метода тканевых структур, позволяющего длительное время сохранять живыми кусочки ткани, помещенные в особые питательные среды. Он впервые был использован в 1885 г. И. П. Скворцовым при выращивании клеток крови вне организма на искусственных средах. Большое значение для разработки этого метода имели работы Н. Г. Хлопина, Г. К. Хрущова, Ф. М. Лазаренко. Замедленная киносъемка, особенно в культурах тканей, с последующим ускоренным воспроизведением на экране позволила проследить динамику процессов в тканях.
Особенно большое развитие в последнее время получили гистохимические методы исследования. Благодаря им стали известны химическое строение клеточных органелл, распределение в клетках и тканях разных химических веществ и ферментов.
Много новых сведений получено при изучении биологических объектов в живом состоянии - при использовании люминесцентного и фазовоконтрастного микроскопов.
Применение метода авторадиографии позволило оценить активность веществ в клетке и определить локализацию тех или иных синтетических процессов.
Изобретение электронного микроскопа дало возможность изучить тончайшие (субмикроскопические) структуры клетки и межклеточного вещества. В этом микроскопе пучок световых лучей заменен потоком электронов, что позволило получать увеличение в десятки и сотни тысяч раз.
В настоящее время используется растровый микроскоп, с помощью которого можно видеть ультраструктуры в трехмерном (объемном) изображении. Для этих целей разработана техника приготовления срезов толщиной в несколько сотых микрона. Электронный микроскоп позволил увидеть тончайшую структуру ядра и составных частей цитоплазмы, определить функциональное назначение этих структур.
Советская гистология вправе гордиться достигнутыми успехами. Задачи ее в ближайшее время связаны не только с углубленными теоретическими исследованиями, но и с оказанием большой помоши практическому здравоохранению. Осуществление этих задач - основная цель научных работников и их помощников - лаборантов.



Close