Известно 30 р - элементов в периодической системе, это элементы, расположенные в III-A - VIII-A группах. У р - элементов заполняется электронами р- подуровень внешнего электронного уровня.

III-A группа – B, Al, Ga, In, Tl – характеризуются наличием 3-х электронов в наружном электронном слое атома, причем у бора на предвнешнем слое атома – 2 электрона, у алюминия – 8 электронов, Ga, In, Tl – 18 электронов. III группа самая элементоемкая – содержит 37 элементов, включая лантаноиды и актиноиды. Все элементы металлы, за исключением бора.

При переходе от Al к Ga радиус атома уменьшается. Это связано с тем, что у Ga заполнение р - подуровня начинается после того, как заполняется 3d 10 электронная оболочка. Под действием 3d 10 - электронов электронная оболочка всего атома сжимается и размер атома уменьшается (эффект d - сжатия).

Монотонного (последовательного) изменения металлических свойств не наблюдается. Металлические свойства резко усиливаются при переходе от бора к алюминию, несколько ослабевают у галлия, и вновь постепенно растут при переходе к таллию. Обусловлено это тем, что атома Ga происходит сжатие электронной оболочки за счет d –электронов (эффект d – сжатия) , In, Tl (в отличие от B и Al) содержат по 18 электронов на предпоследнем слое. Поэтому нарушается линейное изменение свойств (rат, Тпл и т.п.) от Al к Ga.

Температура кипения закономерно уменьшается от B к Tl. Температура плавления незакономерно из-за особенностей строения кристаллической решетки.

Самый легкоплавкий металл – Ga (Тпл = 29,8˚С).

В невозбужденном состоянии конфигурация внешнего уровня ns 2 np 1 , в возбужденном состоянии - ns 1 np 2 .

В невозбужденном состоянии имеется 1 неспаренный электрон, однако соединения большинства этих элементов, в которых их степень окисления +1, очень неустойчивы и наиболее характерна для них степень окисления +3 в возбужденном состоянии, т.к. на перевод электрона из s-состояния в р - надо немного энергии.



B – неметал, Al – еще не типичный металл, Ga, In, Tl –типичные металлы. Соединения: ЭН 3 , Э 2 О 3 , Э(ОН) 3 .

Гидриды элементов носят условный характер, поскольку степень окисления элементов положительная, а водорода - отрицательная

B 2s 2 2p 1 В 2 Н 6

Al 3s 2 3p 1 (AlH 3) n

Ga 4s 2 4p 1 (GaH 3) n

In 5s 2 5p 1 (InH 3) n

Tl 6s 2 6p 1 TlH 3

Э 2 О 3 – общая формула оксидов, имеет различный характер

B 2 O 3 кислотный оксид

Al 2 O 3 амфотерный оксид

Ga 2 O 3

In 2 O 3 амфотерный оксид (с преобладанием основных свойств)

Tl 2 O (Tl 2 O 3) основной оксид

Э(ОН) 3 – гидроксиды, имеет место переход от кислотного, через амфотерный к основным гидроксидам.

нарастают основные свойства
H 3 BO 3 ортоборная кислота

Al(OH) 3 амфотерный гидроксид

Ga(OH) 3 амфотерный гидроксид

In(OH) 3 амфотерный гидроксид

TlOH основной гидроксид

Образуют соединения с галогенами ЭГ 3 , серой Э 2 S 3 , азотом ЭN.

Много общего имеет химия кислородных соединений бора и кремния: кислотная природа оксидов и гидроксидов, способность образовывать многочисленные полимерные структуры, стеклообразование оксидов.

Бор. Получение. Химические свойства

Бор по своим свойствам наиболее схож с элементом IV-A группы кремнием («диагональное сходство»).

Бор – кристаллическое вещество, черного цвета, тугоплавкое при t = 2300 С.

Наиболее распространены две модификации бора: аморфный и кристаллический. Аморфная модификация наиболее реакционноспособна.

Получение бора

1. Термическое разложение гидридов бора:

B 2 H 6 2B + 3H 2

2. Магнийтермией из оксида бора:

B 2 O 3 + 3Mg 3MgO + 2B

B 2 O 3 + 3Zn 3ZnO + 2B

3. Из хлорида бора:

2BCl 3 + 3Zn 3ZnCl 2 + 2B

Непосредственно активно бор реагирует только со фтором, однако при нагревании протекает взаимодействие с кислородом, азотом, углеродом.

B + 2F 2 → BF 4

4B + 3O 2 2B 2 O 3

2B + N 2 2BN

4B + 3C B 4 C 3

Бор реагирует с горячими концентрированными кислотами H 2 SО 4 и HNO 3

2B + 3H 2 SO 4 конц. → 2H 3 BO 3 + 3SO 2

B + 3HNO 3 конц. → H 3 BO 3 + 3NO 2

Со щелочами реагирует только в присутствии сильных окислителей:

2B + 2NaOH + 3H 2 O 2 → 2NaBO 2 + 4H 2 O

Однако аморфный бор может реагировать со щелочами при кипячении:

2B аморфн. + 2NaOH 2NaBO 2 + H 2

3SiO 2 + 4B → 3Si + 2B 2 O 3

Галогениды бора

BF 3 BCl 3 BBr 3 BI 3

газ газ жидкость твердый

E cвязи кДж 644 443 376 284

Устойчивость падает

ВСl 3 образуется посредством взаимодействия трех электронов атома бора в возбужденном состоянии. Образуется три связи по спин-валентному (обменному) механизму.


Ион имеет тетраэдрическую структуру


Галогениды бора имеют кислотный характер и гидролизуются:

BCl 3 + 3H 2 O → H 3 BO 3 + 3HCl

BF 4 + HF → H (сильная кислота)

Кислотные галогениды реагируют с основными галогенидами:

ВF 3 + NaF = Na

С водородом бор непосредственно не реагирует. Гидриды бора получают не прямым взаимодействием с водородом, а косвенным путем.

Например, действием соляной кислоты на борид магния.

Мg 3 В 2 + 6HCl ® В 2 Н 6 ­ +3МgCl 2

Получается смесь бороводородов (боранов). Бораны известны газообразные, жидкие и твердые.

В 2 Н 6 – диборан – газ

В 4 Н 10 – тетраборан – жидкость

В 10 Н 14 – твердый боран.

Они имеют неприятный запах и очень ядовиты. Большинство из них самовоспламеняются и разлагаются водой.

2В 4 Н 10 + 11 О 2 = 4В 2 О 3 + 10 Н 2 О

В 2 Н 6 + 6 Н 2 О = 2Н 3 ВО 3 + 6Н 2 ­

В молекулах бороводородов атомы бора связаны водородными «мостиками».

Бораны – особый вид соединений, в них образуется электроннодефицитная связь. В их молекулах электронов меньше, чем необходимо для образования двухэлектронных связей. Это так называемая «банановая связь», образуется в результате перекрывания двух sp 3 -гибридных орбиталей атомов бора и одной s-орбитали атома водорода. Каждый мостиковый атом водорода образует с двумя атомами бора общую двухэлектронную трехцентровую связь В – Н – В.

Соединения с дефицитом электронов являются акцепторами электронов. Схемы термического разложения ортоборной кислоты:

H 3 BO 3 « HBO 2 + H 2 O

4НВО 2 « 2В 2 О 3 + 2Н 2 О

В отличие от обычных кислот ортоборная кислота не отщепляет Н+, а вызывает смещение равновесия диссоциации воды, присоединяя за счет донорно-акцепторного взаимодействия OH-, выступает в роли одноосновной.

B(OH) 3 + H 2 O → B(OH) 4 - + H + Кд = 5,8 ·10 -10

Координационное число бора по кислороду равно 3, поэтому кислородные соединения бора образуют полимерные соединения (полибораты).

Все кислоты превращаются в ортоборную:

HBO 2 + H 2 O → H 3 BO 3

H 2 B 4 O 7 + 5H 2 O → 4H 3 BO 3

Если ортоборная наиболее устойчивая кислота, то соли ее не существуют в обычных условиях по сравнению с солями мета- и тетраборной кислот. Так при действии на раствор борной кислоты гидроксидом натрия получается не ортоборат (не существует в растворе), а тетраборат натрия (при недостатке NaOH) или метаборат (в избытке NaOH):

2NaOH нед + 4H 3 BO 3 = Na 2 B 4 O 7 + 7 H 2 O

NaOH изб + H 3 BO 3 = NaBO 2 + 2H 2 O

При избытке щелочи образующийся тетраборат натрия превращается в метаборат натрия:

Na 2 B 4 O 7 + 2NaOH изб = 4NaBO 2 + H 2 O

Кислотный гидролиз тетрабората натрия приводит к образованию ортоборной кислоты:

Na 2 B 4 O 7 + 2HCl + 5 H 2 O = 2NaCl + 4 H 3 BO 3

Алюминий

Металлические свойства его выражены сильнее, чем у бора. Химические связи алюминия с другими металлами в основном ковалентного характера. Тип кристаллической структуры - ГПУ.

В отличие от бора атом алюминия имеет свободные d-подуровни на внешнем уровне. У Al 3+ небольшой радиус и довольно высокий заряд, за счет чего он является комплексообразователем с координационным числом 4 или 6. Соединения Al более устойчивы, чем бора.

Получение алюминия

В промышленности Al получают электролизом расплава Al 2 O 3 в криолите (Na 3 AlF 6)

Al 2 O 3 → Al +3 + AlO 3 -3

K (-) Al +3 + 3e = Al 0

A (+) 2AlO 3 -3 – 6e = Al 2 O 3 + O 2

Ga, In, Tl – рассеянные элементы, встречаются в оксидных и сульфидных рудах. В этом случае соответствующие соединения концентрируют и действуют восстановителями.

Э 2 O 3 + 3H 2 → 2Э + 3H 2 O

Э 2 O 3 + 3CO → 2Э + 3CO 2

Алюминий находится в главной подгруппе III группы периодической системы. На внешнем энергетическом уровне атома алюминия имеются свободные р-орбитали, что позволяет ему переходить в возбужденное состояние. В возбужденном состоянии атом алюминия образует три ковалентные связи или полностью отдает три валентных электрона, проявляя степень окисления +3.

Алюминий является самым распространенным металлом на Земле : его массовая доля в земной коре составляет 8,8%. Основная масса природного алюминия входит в состав алюмосиликатов - веществ, главными компонентами которых являются оксиды кремния и алюминия.

Алюминий - легкий металл серебристо-белого цвета, плавится при 600°C, очень пластичен, легко вытягивается в проволоку и прокатывается в листы и фольгу. По электропроводности алюминий уступает лишь серебру и меди.

Взаимодействие с простыми веществами:

1) с галогенами:

2Al + 3Cl 2 = 2AlCl 3

2) с кислородом:

4Al + 3O 2 = 2Al 2 O 3

3) с серой:

2Al + 3S = Al 2 S 3

4) с азотом:

С водородом алюминий непосредственно не реагирует, но его гидрид AlH3 получен косвенным путем.

Взаимодействие со сложными веществами:

1) с кислотами:

2Al + 6HCl = 2AlCl 3 + 3H 2

2) со щелочами:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

Если NaOH в твердом состоянии:

2Al + 2NaOH + 6H2O = 2NaAlO 2 + 3H 2

3) с водой:

2Al + 6H2O = 2Al(OH) 3 + 3H2

Свойства оксида и гидроксида алюминия: оксид алюминия, или глинозем, Al 2 O 3 представляет собой белый порошок. Оксид алюминия можно получить, сжигая металл или прокаливая гидроксид алюминия:

2Al(OH)3 = Al 2 O 3 + 3H 2 O

Оксид алюминия практически не растворяется в воде. Соответствующий этому оксиду гидроксид Al(OH) 3 получают действием гидроксида аммония или растворов щелочей, взятых в недостатке, на растворы солей алюминия:

AlCl 3 + 3NH 3 · H2O = Al(OH)3 + 3NH4Cl

Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства.

Основные свойства:

Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O

Кислотные свойства:

Al 2 O 3 + 6KOH +3H 2 O = 2K 3

2Al(OH) 3 + 6KOH = K 3

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Алюминий получают электролитическим методом. Он не может быть выделен из водных растворов солей, т.к. является очень активным металлом. Поэтому основным промышленным методом получения металлического алюминия является электролиз расплава, содержащего оксид алюминия и криолит.

Металлический алюминий широко используется в промышленности, по объему производства занимает второе место после железа. Основная масса алюминия идет на изготовление сплавов:


Дуралюмин - сплав алюминия, содержащий медь и небольшое количество магния, марганца и других компонентов. Дуралюмины - легкие прочные и коррозионностойкие сплавы. Используют в авиа- и машиностроении.

Магналин - сплав алюминия с магнием. Используют в авиа- и машиностроении, в строительстве. Стоек к коррозии в морской воде, поэтому его применяют в судостроении. Силумин - сплав алюминия, содержащий кремний. Хорошо подвергается литью. Этот сплав используют в автомобиле-, авиа- и машиностроении, производстве точных приборов. Алюминий - пластичный металл, поэтому из него изготавливают тонкую фольгу, используемую в производстве радиотехнических изделий и для упаковки товаров. Из алюминия делают провода, краски «под серебро».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Третья группа периодической системы охватывает очень большое число химических элементов, так как в состав ее, кроме элементов главной и побочной подгрупп, входят элементы с порядковыми номерами 58--71 (лантаноиды) и с порядковыми номерами 90--103 (актиноиды). Мы рассмотрим лантаноиды и актиноиды вместе с элементами побочной подгруппы. алюминий галлий индий

Элементы главной подгруппы третьей группы -- бор, алюминий, галлий, индий и таллий--характеризуются наличием трех электронов в наружном электронном слое атома.

Алюминий -- основной представитель металлов главной подгруппы III группы Периодической системы. Свойства его аналогов -- галлия, индия и таллия -- напоминают свойства алюминия, поскольку все эти элементы имеют одинаковую электронную конфигурацию внешнего уровня ns 2 nр 1 и могут проявлять степень окисления +3.

Электронное строение элементов главной подгруппы III группы

Все элементы группы трехвалентны, но с увеличением атомного номера более характерной становится валентность 1 (Тl преимущественно одновалентен).

В ряду В--Аl--Gа--In--Тl уменьшается кислотность и увеличивается основность гидроксидов R(ОН) 3 . Н 3 ВО 3 -- кислота, Аl(ОН) 3 и Gа(ОН) 3 -- амфотерные основания, In(ОН) 3 и Тl(ОН) 3 -- типичные основания. ТlOН -- сильное основание.

Далее рассмотрим свойства элементов: подробно -- алюминия, как типичного представителя р-металлов, чрезвычайно широко применяемого на практике, бора, как представителя «полуметаллов» и проявляющего аномальные свойства по сравнению со всеми другими элементами подгруппы.

Алюминий - самый распространенный металл на Земле (3-е место среди всех элементов; 8% состава земной коры). В виде свободного металла в природе не встречается; входит в состав глиноземов (Аl 2 О 3), бокситов (Аl 2 О 3 * xН 2 О). Кроме того, алюминий обнаруживается в виде силикатов в таких породах, как глины, слюды и полевые шпаты.

Физические свойства.

Алюминий в свободном виде -- серебристо-белый металл, обладающий высокой тепло- и электропроводностью. Алюминий имеет невысокую плотность -- примерно втрое меньше, чем у железа или меди, и одновременно -- это прочный металл.

Бор существует в нескольких аллотропных модификациях. Аморфный бор представляет собой темно-коричневый порошок. Кристаллический бор -- серо-черный, с металлическим блеском. По твердости кристаллический бор занимает второе место (после алмаза) среди всех веществ. При комнатной температуре бор плохо проводит электрический ток; так же, как кремний, он обладает полупроводниковыми свойствами.

Химические свойства.

Поверхность алюминия обычно покрыта прочной пленкой оксида Аl 2 О 3 , которая предохраняет его от взаимодействия с окружающей средой. Если эту пленку удаляют, то металл может энергично реагировать с водой:

2Аl + 6Н 2 О = 2Аl(ОН) 3 + ЗН 2 ^.

В виде стружек или порошка он ярко горит на воздухе, выделяя большое количество теплоты:

2Аl + 3/2O 2 = Аl 2 О 3 + 1676 кДж.

Это обстоятельство используется для получения ряда металлов из их оксидов методом алюмотермии. Так назвали восстановление порошкообразным алюминием тех металлов, у которых теплоты образования оксидов меньше теплоты образования Аl 2 О 3 , например:

Сr 2 О 3 + 2Аl = 2Сr + Аl 2 О 3 + 539 кДж.

Бор, в отличие от алюминия, химически инертен (особенно кристаллический). Так, с кислородом он реагирует только при очень высоких температурах (> 700°С) с образованием борного ангидрида В 2 О 3:

2В + ЗО 2 = 2В 2 О 3 ,

с водой бор не реагирует ни при каких обстоятельствах. При еще более высокой температуре (> 1200°С) он взаимодействует с азотом, давая нитрид бора (служит для изготовления огнеупорных материалов):

Лишь со фтором бор реагирует при комнатной температуре, реакции же с хлором и бромом протекают только при сильном нагревании (400 и 600 °С соответственно); во всех этих случаях он образует тригалогениды ВНal 3 -- дымящие на воздухе летучие жидкости, легко гидролизующиеся водой:

2В + 3Наl 2 = 2ВНаl 3 .

В результате гидролиза образуется ортоборная (борная) кислота H 3 BO 3:

ВНаl 3 + 3Н 2 О = Н 3 ВО 3 + ЗННаl.

В отличие от бора, алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С):

2Аl + 3S = Аl 2 S 3 (сульфид алюминия),

2Аl + N 2 = 2АlN (нитрид алюминия),

Аl + Р = АlР (фосфид алюминия),

4Аl + 3С = Аl 4 С 3 (карбид алюминия).

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана.

Алюминий легко растворяется в соляной кислоте любой концентрации:

2Аl + 6НСl = 2АlСl 3 + ЗН 2 ^.

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2Аl + 6Н 2 SО 4(конц) = Аl 2 (SО 4) 3 + 3SО 2 + 6Н 2 О,

Аl + 6НNO 3(конц) = Аl(NO 3) 3 + 3NO 2 + 3Н 2 О.

В разбавленной серной кислоте алюминий растворяется с выделением водорода:

2Аl + 3Н 2 SО 4 = Аl 2 (SО 4) 3 + 3Н 2 .

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II):

Аl + 4HNО 3 = Аl(NО 3) 3 + NO + 2Н 2 О.

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов:

2Аl + 2NаОН + 6Н 2 О = 2Na[Аl(ОН) 4 ] + 3Н 2 ^.

Кислоты, не являющиеся окислителями, с бором не реагируют и только концентрированная HNO 3 окисляет его до борной кислоты:

В + HNO 3(конц) + Н 2 О = Н 3 ВO 3 + NO^.

Галлий (лат. Gallium), Ga, химический элемент III группы периодической системы Д. И. Менделеева, порядковый номер 31, атомная масса 69,72; серебристо-белый мягкий металл. Состоит из двух стабильных изотопов с массовыми числами 69 (60,5%) и 71 (39,5%).

Существование Галлия ("экаалюминия") и основные его свойства были предсказаны в 1870 году Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 году французским химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Точное совпадение свойств Галлия с предсказанными было первым триумфом периодической системы.

Среднее содержание Галлия в земной коре относительно высокое, 1,5·10 -3 % по массе, что равно содержанию свинца и молибдена. Галлий - типичный рассеянный элемент. Единственный минерал Галлия - галлит CuGaS 2 очень редок. Геохимия Галлия тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлия в литосфере заключена в минералах алюминия. Содержание Галлия в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Галлия наблюдаются также в сфалеритах (0,01-0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах.

Физические свойства Галлия. Галлий имеет ромбическую (псевдотетрагональную) решетку с параметрами а = 4,5197Е, b = 7,6601Е, c = 4,5257Е. Плотность (г/см 3) твердого металла 5,904 (20°С), жидкого 6,095 (29,8°С), то есть при затвердевании объем Галлия увеличивается; t пл 29,8°C, t кип 2230°С. Отличительная особенность Галлия - большой интервал жидкого состояния (2200°С) и низкое давление пара при температурах до 1100-1200°С. Удельная теплоемкость твердого Галлия 376,7 дж/(кг·К), то есть 0,09 кал/(г·град) в интервале 0-24°С, жидкого соответственно 410 дж/(кг·К), то есть 0,098 кал/(г·град) в интервале 29-100°С. Удельное электрическое сопротивление (ом·см) твердого Галлия 53,4·10 -6 (0°С), жидкого 27,2·10 -6 (30°С). Вязкость (пуаз = 0,1 н·сек/м 2): 1,612 (98°С), 0,578 (1100°С), поверхностное натяжение 0,735 н/м (735 дин/см) (30 °С в атмосфере Н 2). Коэффициенты отражения для длин волн 4360Е и 5890Е соответственно равны 75,6% и 71,3%. Сечение захвата тепловых нейтронов 2,71 барна (2,7·10 -28 м 2).

Химические свойства Галлия.

На воздухе при обычной температуре Галлий стоек. Выше 260° С в сухом кислороде наблюдается медленное окисление (пленка оксида защищает металл). В серной и соляной кислотах Галлий растворяется медленно, в плавиковой - быстро, в азотной кислоте на холоду Галлий устойчив. В горячих растворах щелочей Галлий медленно растворяется. Хлор и бром реагируют с Галлием на холоду, иод - при нагревании. Расплавленный Галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами.

Наиболее устойчивы трехвалентные соединения Галлия, которые во многом близки по свойствам химическим соединениям алюминия. Кроме того, известны одно- и двухвалентные соединения. Высший оксид Gа 2 О 3 - вещество белого цвета, нерастворимое в воде. Соответствующий ему гидрооксид осаждается из растворов солей Галлия в виде белого студенистого осадка. Она имеет ярко выраженный амфотерный характер. При растворении в щелочах образуются галлаты (например, Na), при растворении в кислотах - соли Галлия: Gа 2 (SО 4) 3 , GaCl 3 и др. Кислотные свойства у гидрооксида Галлия выражены сильнее, чем у гидрооксида алюминия [интервал выделения Аl(ОН) 3 лежит в пределах рН = 10,6-4,1, a Ga(OH) 3 в пределах рН = 9,7-3,4].

В отличие от Al(ОН) 3 , гидрооксид Галлия растворяется не только в сильных щелочах, но и в растворах аммиака. При кипячении из аммиачного раствора вновь выпадает гидрооксид Галлия.

Из солей Галлия наибольшее значение имеют хлорид GaCl 3 (t пл 78°C, t кип 200°C) и сульфат Ga 2 (SO 4) 3 . Последний с сульфатами щелочных металлов и аммония образует двойные соли типа квасцов, например (NH 4)Ga(SO 4) 2 ·12H 2 O. Галлий образует малорастворимый в воде и разбавленных кислотах ферроцианид Ga 4 3 , что может быть использовано для его отделения от Аl и ряда других элементов.

Получение Галлия. Основной источник получения Галлия - алюминиевое производство. Галлий при переработке бокситов по способу Байера концентрируется в оборотных маточных растворах после выделения Аl(ОН) 3 . Из таких растворов Галлий выделяют электролизом на ртутном катоде. Из щелочного раствора, полученного после обработки амальгамы водой, осаждают Ga(OH) 3 , которую растворяют в щелочи и выделяют Галлий электролизом.

При содово-известковом способе переработки бокситовой или нефелиновой руды Галлий концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнительного обогащения осадок гидрооксидов обрабатывают известковым молоком. При этом большая часть Al остается в осадке, а Галлий переходит в раствор, из которого пропусканием СО 2 выделяют галлиевый концентрат (6-8% Gа 2 О 3); последний растворяют в щелочи и выделяют Галлий электролитически.

Источником Галлия может служить также остаточный анодный сплав процесса рафинирования Al по методу трехслойного электролиза. В производстве цинка источниками Галлия являются возгоны (вельц-оксиды), образующиеся при переработке хвостов выщелачивания цинковых огарков.

Полученный электролизом щелочного раствора жидкий Галлий, промытый водой и кислотами (НСl, HNO 3), содержит 99,9-99,95% Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием монокристалла из расплава.

Применение Галлия. Наиболее перспективно применение Галлия в виде химических соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми свойствами. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях и других приборах, где может быть использован фотоэффект в запирающем слое, а также в приемниках инфракрасного излучения. Галлий можно использовать для изготовления оптических зеркал, отличающихся высокой отражательной способностью. Сплав алюминия с Галлием предложен вместо ртути в качестве катода ламп ультрафиолетового излучения, применяемых в медицине. Жидкий Галлий и его сплавы предложено использовать для изготовления высокотемпературных термометров (600-1300°С) и манометров. Представляет интерес применение Галлия и его сплавов в качестве жидкого теплоносителя в энергетических ядерных реакторах (этому мешает активное взаимодействие Галлий при рабочих температурах с конструкционными материалами; эвтектический сплав Ga-Zn-Sn оказывает меньшее коррозионное действие, чем чистый Галлий).

Индий (лат. Indium), In, химический элемент III группы периодической системы Менделеева; атомный номер 49, атомная масса 114,82; белый блестящий мягкий металл. Элемент состоит из смеси двух изотопов: 113 In (4,33%) и 115 In (95,67%); последний изотоп обладает очень слабой в-радиоактивностью (период полураспада T Ѕ = 6·10 14 лет).

В 1863 году немецкие ученые Ф. Райх и T. Рихтер при спектроскопическом исследовании цинковой обманки обнаружили в спектре новые линии, принадлежащие неизвестному элементу. По ярко-синей (цвета индиго) окраске этих линий новый элемент был назван Индий.

Распространение Индия в природе. Индий - типичный рассеянный элемент, его среднее содержание в литосфере составляет 1,4·10 -5 % по массе. При магматических процессах происходит слабое накопление Индия в гранитах и других кислых породах. Главные процессы концентрации Индия в земной коре связаны с горячими водными растворами, образующими гидротермальные месторождения. Индий связан в них с Zn, Sn, Cd и Pb. Сфалериты, халькопириты и касситериты обогащены Индием в среднем в 100 раз (содержание около l,4·10 -3 %). Известны три минерала Индия - самородный Индий, рокезит CuInS 2 и индит In 2 S 4 , но все они крайне редкие. Практическое значение имеет накопление Индия в сфалеритах (до 0,1%, иногда 1%). Обогащение Индия характерно для месторождений Тихоокеанского рудного пояса.

Физические свойства Индия .

Кристаллическая решетка Индия тетрагональная гранецентрированная с параметрами а = 4,583Е и с= 4,936Е. Атомный радиус 1,66Е; ионные радиусы In 3+ 0,92Е, In + 1,30Е; плотность 7,362 г/см 3 . Индий легкоплавок, его t пл 156,2 °C; t кип 2075 °C. Температурный коэффициент линейного расширения 33·10 -6 (20 °С); удельная теплоемкость при 0-150°С 234,461 дж/(кг·К), или 0,056 кал/(г·° С); удельное электросопротивление при 0°C 8,2·10 -8 ом·м, или 8,2·10 -6 ом·см; модуль упругости 11 н/м 2 , или 1100 кгс/мм 2 ; твердость по Бринеллю 9 Мн/м 2 , или 0,9 кгс/мм 2 .

Химические свойства Индия .

В соответствии с электронной конфигурацией атома 4d 10 5s 2 5p 1 Индий в соединениях проявляет валентность 1, 2 и 3 (преимущественно). На воздухе в твердом компактном состоянии Индий стоек, но окисляется при высоких температурах, а выше 800 °C горит фиолетово-синим пламенем, давая оксид In 2 O 3 - желтые кристаллы, хорошо растворимые в кислотах. При нагревании Индий легко соединяется с галогенами, образуя растворимые галогениды InCl 3 , InBr 3 , InI 3 . Нагреванием Индия в токе HCl получают хлорид InCl 2 , а при пропускании паров InCl 2 над нагретым In образуется InCl. С серой Индий образует сульфиды In 2 S 3 , InS; они дают соединения InS·In 2 S 3 и 3InS·In 2 S 3 . В воде в присутствии окислителей Индий медленно корродирует с поверхности: 4In + 3O 2 +6H 2 O = 4In(ОН) 3 . В кислотах Индий растворим, его нормальный электродный потенциал равен -0,34 в, в щелочах практически не растворяется. Соли Индия легко гидролизуются; продукт гидролиза - основные соли или гидрооксид In(OH) 3 . Последний хорошо растворим в кислотах и плохо - в растворах щелочей (с образованием солей - индатов): In(ОН) 3 + 3KOH = K 3 . Соединения Индия низших степеней окисления довольно неустойчивы; галогениды InHal и черный оксид In 2 O - очень сильные восстановители.

Получение Индия.

Индий получают из отходов и промежуточных продуктов производств цинка, свинца и олова. Это сырье содержит от тысячных до десятых долей процента Индия. Извлечение Индия складывается из трех основные этапов: получение обогащенного продукта - концентрата Индия; переработка концентрата до чернового металла; рафинирование. В большинстве случаев исходное сырье обрабатывают серной кислотой и переводят Индий в раствор, из которого гидролитическим осаждением выделяют концентрат. Черновой Индий выделяют главным образом цементацией на цинке или алюминии. Рафинирование производят химическими, электрохимическими, дистилляционными и кристаллофизическими методами.

Применение Индия .

Наиболее широко Индий и его соединения (например, нитрид InN, фосфид InP, антимонид InSb) применяют в полупроводниковой технике. Индий служит для различных антикоррозионных покрытий (в т. ч. подшипниковых). Индиевые покрытия обладают высокой отражательной способностью, что используется для изготовления зеркал и рефлекторов. Промышленное значение имеют некоторые сплавы Индий, в том числе легкоплавкие сплавы, припои для склеивания стекла с металлом и другие.

Таллий (лат. Thallium), Tl, химический элемент III группы периодической системы Менделеева, атомный номер 81, атомная масса 204,37; на свежем разрезе серый блестящий металл; относится к редким рассеянным элементам. В природе элемент представлен двумя стабильными изотопами 203 Tl (29,5%) и 205 Tl (70,5%) и радиоактивными изотопами 207 Tl - 210 Tl - членами радиоактивных рядов. Искусственно получены радиоактивные изотопы 202 Tl (Т Ѕ = 12,5 сут), 204 Tl (T Ѕ = 4,26 года), 206 Tl (Т Ѕ = 4,19 мин) и другие. Таллий открыт в 1861году У. Круксом в шламе сернокислотного производства спектроскопическим методом по характерной зеленой линии в спектре (отсюда название: от греч. thallos - молодая, зеленая ветка). В 1862 году французский химик К. О. Лами впервые выделил Таллий и установил его металлическую природу.

Распространение Таллия в природе. Среднее содержание Таллия в земной коре (кларк) 4,5·10 -5 % по массе, но благодаря крайнему рассеянию его роль в природных процессах невелика. В природе встречаются преимущественно соединения одновалентного и реже трехвалентного Таллия. Как и щелочные металлы, Таллий концентрируется в верхней части земной коры - в гранитном слое (среднее содержание 1,5·10 -4 %), в основные породах его меньше (2·10 -5 %), а в ультраосновных лишь 1·10 -6 %. Известно лишь семь минералов Таллия (например, круксит, лорандит, врбаит и другие), все они крайне редкие. Наибольшее геохимическое сходство Таллий имеет с К, Rb, Cs, а также с Pb, Ag, Cu, Bi. Таллий легко мигрирует в биосфере. Из природных вод он сорбируется углями, глинами, гидрооксидами марганца, накапливается при испарении воды (например, в озере Сиваш до 5·10 -8 г/л).

Физические свойства Таллия

Таллий мягкий металл, на воздухе легко окисляется и быстро тускнеет. Таллий при давлении 0,1 Мн/м 2 (1 кгс/см 2) и температуре ниже 233 °С имеет гексагональную плотноупакованную решетку (а=3,4496Е; с = 5,5137Е), выше 233 °С - объемноцентрированную кубическую (а = 4,841Е), при высоких давлениях 3,9 Гн/м 2 (39000 кгс/см 2) - гранецентрированную кубическую; плотность 11,85г/см 3 ; атомный радиус 1,71Е, ионные радиусы: Tl + 1,49 Е, Tl 3+ 1,05 Е; Т пл 303,6 °С; Т кип 1457 °С, удельная теплоемкость 0,130 кдж/(кг·К) при 20-100 °С; температурный коэффициент линейного расширения 28·10 -6 при 20 °С и 41,5·10 -6 при 240-280 °С; теплопроводность 38,94 вт/(м -К) . Удельное электросопротивление при 0 °С (18·10 -6 ом -см); температурный коэффициент электросопротивления 5,177·10 -3 - 3,98·10 -3 (0-100 °С). Температура перехода в сверхпроводящее состояние 2,39 К. Таллий диамагнитен, его удельная магнитная восприимчивость -0,249·10 -6 (30 °С).

Химические свойства Таллия.

Конфигурация внешней электронной оболочки атома Tl 6s 2 6р 1 ; в соединениях имеет степень окисления +1 и +3 . Таллий взаимодействует с кислородом и галогенами уже при комнатной температуре, с серой и фосфором при нагревании. Хорошо растворяется в азотной, хуже в серной кислотах, не растворяется в галогенводородных, муравьиной, щавелевой и уксусной кислотах. Не взаимодействует с растворами щелочей; свежеперегнанная вода, не содержащая кислорода, не действует на Таллий. Основные соединения с кислородом: оксид (I) Tl 2 О и оксид (III) Tl 2 О 3 . Оксид Таллия (I) и соли Tl (I) нитрат, сульфат, карбонат - растворимы; хромат, бихромат, галогениды (за исключением фторида), а также оксид Таллия (III) - малорастворимы в воде. Tl (Ш) образует большое число комплексных соединений с неорганических и органических лигандами. Галогениды Tl (Ш) хорошо растворимы в воде. Наибольшее практическое значение имеют соединения Tl (I).

Получение Таллия .

В промышленного масштабах технический Таллий получают попутно при переработке сульфидных руд цветных металлов и железа. Его извлекают из полупродуктов свинцового, цинкового и медного производств. Выбор способа переработки сырья зависит от его состава. Например, для извлечения Таллия и других ценных компонентов из пылей свинцового производства проводится сульфатизация материала в кипящем слое при 300-350 °С. Полученную сульфатную массу выщелачивают водой, и из раствора экстрагируют Таллий 50%-ным раствором трибутилфосфата в керосине, содержащим иод, а затем реэкстрагируют серной кислотой (300 г/л) с добавкой 3%-ной перекиси водорода. Из реэкстрактов металл выделяют цементацией на цинковых листах. После переплавки под слоем едкого натра получают Таллий чистотой 99,99%. Для более глубокой очистки металла применяют электролитическое рафинирование и кристаллизационную очистку. алюминий, галлий, индий

Применение Таллия.

В технике Таллий применяется главным образом в виде соединений. Монокристаллы твердых растворов галогенидов TlBr - TlI и TlCl - TlBr (известные в технике как КРС-5 и КРС-6) используют для изготовления оптических деталей в приборах инфракрасной техники; кристаллы TlCl и TlCl-TlBr- в качестве радиаторов счетчиков Черенкова. Tl 2 О входит в состав некоторых оптических стекол; сульфиды, оксисульфиды, селениды, теллуриды - компоненты полупроводниковых материалов, использующихся при изготовлении фотосопротивлений, полупроводниковых выпрямителей, видиконов. Водный раствор смеси муравьино- и малоновокислого Таллия (тяжелая жидкость Клеричи) широко применяют для разделения минералов по плотности. Амальгама Таллия, затвердевающая при -59°С, применяется в низкотемпературных термометрах. Металлический Таллий используют для получения подшипниковых и легкоплавких сплавов, а также в кислородомерах для определения кислорода в воде. 204 Tl в качестве источника в-излучений применяют в радиоизотопных приборах.

Бор (лат. Borum), В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-черного цвета (очень чистый Бор бесцветен). Природный Бор состоит из двух стабильных изотопов: 10 B (19%) и 11 B (81%).

Ранее других известное соединение Бора - бура - упоминается в сочинениях алхимиков под арабским названием "бурак" и латинским Borax, откуда и произошло наименование "бор". Свободный Бор (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 году нагреванием борного ангидрида B 2 O 3 с металлическим калием. Общее содержание Бора в земной коре 3·10 -4 % по массе. В природе Бор в свободном состоянии не обнаружен. Многие соединения Бора широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Бор входит в состав многих изверженных и осадочных пород. Соединения Бора найдены в нефтяных водах, морской воде, соляных озерах, горячих источниках, в вулканических и сопочных грязях, во многих почвах.

Физические свойства Бора .

Известно несколько кристаллических модификаций Бор Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Бора образуют в этих структурах трехмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твердость Бора. Однако строение каркаса в структурах Бора гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Бора служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Бора. Икосаэдры соединяются между собой как непосредственно, так и посредством промежуточных атомов Бора, не входящих в состав какого-либо икосаэдра. При таком строении оказывается, что атомы Бор в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних "соседей" и 2 более далеких). Так как на внешней оболочке атома Бора находятся всего 3 электрона (электронная конфигурация 2s 2 2p 1), на каждую присутствующую в кристаллическом Боре связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Бор осуществляется особый тип ковалентной связи - многоцентровая связь с дефицитом электронов. В соединениях ионного типа Бор 3-валентен. Так называемый "аморфный" Бор, получаемый при восстановлении B 2 O 3 металлическим натрием или калием, имеет плотность 1,73 г/см 3 . Чистый кристаллический Бор имеет плотность 2,3 г/см 3 , температуру плавления 2030°С, температуру кипения 3860°С; твердость Бора по минералогической шкале 9, микротвердость 34 Гн/м 2 (3400 кгс/мм 2). Кристаллический Бор - полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°С электрическая проводимость Бора увеличивается на несколько порядков, причем знак проводимости меняется (электронная - при низких температурах, дырочная - при высоких).

Химические свойства Бора.

Химически Бор при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причем кристаллический Бор менее активен, чем аморфный. С повышением температуры активность Бора возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700°С Бор горит красноватым пламенем, образуя борный ангидрид B 2 O 3 - бесцветную стекловидную массу. При нагревании выше 900 °С Бор с азотом образует нитрид бора BN, при нагревании с углем -карбид бора B 4 C 3 , с металлами - бориды. С водородом Бор заметно не реагирует; его гидриды (бороводороды) получают косвенным путем. При температуре красного каления Бор взаимодействует с водяным паром: 2B + 3Н 2 О = B 2 O 3 + 3H 2 . В кислотах Бор при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H 3 BO 3 . Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

Во фториде BF 3 и других галогенидах Бор связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Бора в галогениде BX 3 недостает пары электронов, молекулы галогенидов, особенно BF 3 , присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака.

В таких комплексных соединениях атом Бор окружен четырьмя атомами (или группами атомов), что соответствует характерному для Бора в его соединениях координационному числу 4. Важные комплексные соединения Бор - борогидриды, например Na, и фтороборная, или борофтористоводородная, кислота H , образующаяся из BF 3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Бора и его соединений - их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF 3 (кремниевая дает SiF 4). Бороводороды напоминают кремневодороды, а карбид Бора - карбид кремния, и т. д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В - 3 валентных электрона, у N - 5, у двух атомов С - по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Бор и азот. Так, боразан ВН 3 -NH 3 подобен этану СН 3 -СН 3 , а боразен BH 2 =NH 2 и простейший боразин BH?NH подобны соответственно этилену СН 2 =СН 2 и ацетилену СН?СН. Если тримеризация ацетилена С 2 Н 2 дает бензол С 6 Н 6 , то аналогичный процесс приводит от боразина BHNH к боразолу B 3 N 3 H 6 .

Получение Бора .

Элементарный Бор из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а ее обезвоживанием - борный ангидрид. Восстановление В 2 О 3 металлическим магнием дает Бор в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Бор, необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают ВCl 3 водородом при 1200°С или разлагают пары ВВr 3 на танталовой проволоке, раскаленной до 1500°С. Чистый Бор получают также термическим разложением бороводородов.

Применение Бора. Бор в небольших количествах (доли%) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001-0,003% Бор повышает ее прочность (обычно в сталь вводят Бор в виде ферробора, то есть сплава железа с 10-20% Бора). Поверхностное насыщение стальных деталей бором (до глубины 0,1-0,5 мм) улучшает не только механические свойства, но и стойкость стали против коррозии. Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов, служащих для прекращения или замедления реакции деления. Бор в виде газообразного BF 3 используют в счетчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные б-частицы, которые легко регистрировать; число же б-частиц равно числу нейтронов, поступивших в счетчик: 10 5 В + 1 0 n = 7 3 Li + 4 2 б). Сам Бор и его соединения - нитрид BN, карбид B 4 C 3 , фосфид ВР и другие - применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и ее соли (прежде всего бура), бориды и другие. BF 3 - катализатор некоторых органических реакций.

Бор в организме

. Бор относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли% на сухую массу). Бор необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Бора - отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Бора падает урожай семян. Известны многие болезни, связанные с недостатком Бора, например гниль сердечка сахарной свеклы, черная пятнистость столовой свеклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Бора замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Бор является необходимым элементом, пока неизвестны. При недостатке Бора у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования, вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Бора в почве в нее вносят борные удобрения. В биогеохимических провинциях с избытком Бора в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Бора,- гигантизм, карликовость, нарушение точек роста и других. На почвах с интенсивным борным засолением встречаются участки, лишенные растительности, "плешины", - один из поисковых признаков месторождения Бора. Значение Бора в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Бора (60-600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта - борный энтерит.

Алюминий (лат. Aluminium), Al, химический элемент III группы периодической системы Менделеева; атомный номер 13, атомная масса 26,9815; серебристо-белый легкий металл. Состоит из одного стабильного изотопа 27 Al.

Историческая справка. Название Алюминий происходит от лат. alumen - так еще за 500 лет до н. э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленного способ производства Алюминия предложил в 1854 французский химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Распространение Алюминия в природе. По распространенности в природе Алюминий занимает 3-е место после кислорода и кремния и 1-е - среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде Алюминий в силу своей химической активности не встречается. Известно несколько сотен минералов Алюминия, преимущественно алюмосиликатов. Промышленное значение имеют боксит, алунит и нефелин. Нефелиновые породы беднее бокситов глиноземом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная кислота. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности.

Физические свойства Алюминия .

Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Е. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20°С) 2698,9 кг/м 3 ; t пл 660,24°С; t кип около 2500°С; коэффициент термического расширения (от 20° до 100°С) 23,86·10 -6 ; теплопроводность (при 190°С) 343 вт/м·К , удельная теплоемкость (при 100°С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50-60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость - до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства Алюминия.

Внешняя электронная оболочка атома Алюминия состоит из 3 электронов и имеет строение 3s 2 3р 1 . В обычных условиях Алюминий в соединениях 3-валентен, но при высоких температурах может быть одновалентным, образуя так называемых субсоединения. Субгалогениды Алюминия, AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении температуры распадаются (диспропорционируют) на чистый Аl и AlF 3 или АlСl 3 и поэтому могут быть использованы для получения сверхчистого Алюминия. При накаливании мелкоизмельченный или порошкообразный Алюминий энергично сгорает на воздухе. Сжиганием Алюминия в токе кислорода достигается температура выше 3000°С. Свойством Алюминия активно взаимодействовать с кислородом пользуются для восстановления металлов из их оксидов (Алюминотермия). При темно-красном калении фтор энергично взаимодействует с Алюминием, образуя AlF 3 . Хлор и жидкий бром реагируют с Алюминием при комнатной температуре, иод - при нагревании. При высокой температуре Алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al 4 C 3 и сульфид Al 2 S 3 . С водородом Алюминий не взаимодействует; гидрид Алюминия (AlН 3) X получен косвенным путем. Большой интерес представляют двойные гидриды Алюминия и элементов I и II групп периодической системы состава МеН n · n AlH 3 , так называемые алюмогидриды. Алюминий легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей Алюминия хорошо растворимо в воде. Растворы солей Алюминия вследствие гидролиза показывают кислую реакцию.

Получение Алюминия .

В промышленности Алюминий получают электролизом глинозема Аl 2 О 3 , растворенного в расплавленном криолите NasAlF 6 при температуре около 950° С. Используются электролизеры трех основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожженными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом - огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объем заполняется расплавленным электролитом, состоящим из 6-8% глинозема и 94-92% криолита (обычно с добавкой AlF 3 и около 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом - погруженные в электролит угольные обожженные блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный Алюминий, который накапливается на подине, а на аноде - кислород, образующий с угольным анодом CO и CO 2 . К глинозему, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нем оксидов более электроположительных элементов, чем Алюминий, ведет к загрязнению Алюминия. При достаточном содержании глинозема ванна работает нормально при электрическом напряжении порядка 4-4,5 В. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 кА. Из ванн Алюминий извлекают обычно с помощью вакуум-ковша. Расплавленный Алюминий чистотой 99,7% разливают в формы. Алюминий высокой чистоты (99,9965%) получают электролитическим рафинированием первичного Алюминия с помощью так называемых трехслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитического рафинирования Алюминия с применением органических электролитов показали принципиальную возможность получения Алюминий чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки Алюминий применяют зонную плавку или дистилляцию его через субфторид.

При электролитическом производстве Алюминия возможны поражения электрическим током, высокой температурой и вредными газами. Для избежания несчастных случаев ванны надежно изолируют, рабочие пользуются сухими валенками, соответствующей спецодеждой. Здоровая атмосфера поддерживается эффективной вентиляцией. При постоянном вдыхании пыли металлического Алюминия и его оксида может возникнуть алюминоз легких. У рабочих, занятых в производстве Алюминия, часты катары верхних дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая концентрация в воздухе пыли металлического Алюминий, его оксида и сплавов 2 мг/м 3 .

Применение Алюминия.

Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V ,применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

В металлургии Алюминий (помимо сплавов на его основе)- одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Размещено на Allbest.ru

Подобные документы

    Общая характеристика р-элементов III группы, их основные физические и химические свойства. Описание самых распространенных элементов: бора, алюминия, подгруппы галлия. Их биологическая роль, применение и распространенность. Причины парникового эффекта.

    дипломная работа , добавлен 08.08.2015

    Характеристика галлия как не самого легкоплавкого из металлов, температура плавления. История открытия элемента, область его применения. Попытки применения галлия в атомных реакторах. Патент на применение галлия. Взаимодействие галлия с серной кислотой.

    реферат , добавлен 19.01.2010

    Получение, строение и физико-химические свойства тригалогенидов галлия. Ионные и молекулярные комплексы с органическими и неорганическими лигандами. Термохимические характеристики комплексов. Синтез комплекса хлорида галлия с 1,2-бис(4-пиридил)этиленом.

    курсовая работа , добавлен 05.10.2015

    Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.

    презентация , добавлен 09.04.2017

    История открытия химических элементов. Запасы и добыча разведанных месторождений индия и таллия. Физические и химические свойства элементов, их получение и применение. Опасность отравления таллием (солями), использование берлинской лазури как антидота.

    презентация , добавлен 11.03.2014

    Периодическая система Д.И. Менделеева. Характеристика химического элемента алюминия, его химические и физические свойства. Ценность "серебра из глины" в период его открытия. Способ получения алюминия, его содержание в земной коре, важнейшие минералы.

    презентация , добавлен 11.11.2011

    Происхождение, методы получения и физико-химические свойства висмута - химического элемента V группы периодической системы Д.И. Менделеева. Содержание в земной коре и в воде, добыча и производство. Применение в промышленности, машиностроении и в медицине.

    курсовая работа , добавлен 01.05.2011

    Свойства алюминия: его получение, применение и химические свойства. Виды щелочей в алюминатных растворах. Оксиды и гидроксиды алюминия. Корунд как наиболее устойчивая форма глинозёма. Природные соединения алюминия: боксит, корунд, рубин и сапфир.

    реферат , добавлен 27.03.2009

    Общая характеристика алюминия как элемента периодической таблицы химических элементов. Физико-химические свойства алюминия. Химический опыт с исчезновением алюминиевой ложки. Амфотерные свойства гидроксида алюминия. Необычная реакция вытеснения.

    лабораторная работа , добавлен 09.06.2014

    Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.

В IA группу (главная подгруппа первой группы) таблицы Менделеева вхо­дят металлы — литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr. Традиционно, данные элементы называют щелочными металлами (ЩМ), так как их простые вещества образуют при взаимодействии с водой едкие щелочи. Последний из известных представителей группы щелочных металлов (Fr) является радио­активным элементом, в связи с чем его химические свойства изучены недостаточно: период полураспада его наиболее долгоживущего изотопа 223 Fr составляет всего лишь около 22 мин.

Электронные формулы, а также некоторые свойства щелочных металлов представлены в таблице ниже:

Свойство Li Na К Rb Cs Fr
Заряд ядра Z 3 11 19 37 55 87
2s1 3s1 [Аr]4s1 5s1 [Хе]6s1 7s1
0,152 0,186 0,227 0,248 0,265 0,270
Ионный радиус r ион *, нм 0,074 0,102 0,138 0,149 0,170 0,180
Радиус гидратированного иона,r ион, нм 0,340 0,276 0,232 0,228 0,228 -
Энергия ионизации, кДж/моль: I 1 I 2 520,2 7298 495,8 4562 418,8 3052 403,0 2633 375,7 2234 (380) (2100)
Электроотрицательность 0,98 0,93 0,82 0,82 0,79 0,70

При движении вниз по IA группе возрастает радиус атомов металлов (r мет), что, собственно, характерно для любых элементов всех главных подгрупп. Относительно малое увеличение радиуса при переходе от K к Rb и далее к Cs обусловлено заполнением 3d- и 4d-подуровней соответственно.

Ионные радиусы ЩМ существенно меньше металлических, что связано с потерей единственного валентного электрона. Они также зако­номерно возрастают от Li + к Cs + . Размеры же гидратированных катионов изме­няются в противоположном направлении, что объясняется в рамках простей­шей электростатической модели. Наименьший по размеру ион Li + лучше катионов остальных щелочных металлов притягивает к себе полярные молекулы воды, образуя наиболее толстую гидратную оболочку. Исследования показали, что в водном растворе катион лития Li + окружен 26 моле­кулами воды, из которых только 4 находятся в непосредственном контакте с ионом лития (первой координационной сфере). По этой причине многие соли лития, например, хлорид, перхлорат и сульфат, а также гидроксид выделяются из водных растворов в виде кристаллогидратов. Хлорид LiCl·Н 2 O теряет воду при температуре 95 °С, LiOH·Н 2 O - при 110°С, а LiClO 4 ·Н 2 O - только при температуре выше 150°С. С увеличением ионного радиуса катиона щелочного металла сила его электростатического взаимодействия с молекулами воды ослабевает, что приводит к снижению толщины гидратной оболочки и, как следствие, радиуса гидратированного иона [М(Н 2 O) n ] (где n = 17, 11, 10, 10 для М + = Na + , К + , Rb + , Cs + соответственно).

Внешний энергетический уровень атома ЩМ содержит один единственный электрон, который слабо связан с ядром, о чем говорят низкие значения энер­гии ионизации I 1 . Атомы щелочных металлов легко ионизируются с образова­нием катионов М + , входящих в состав практически всех химических соединений этих элементов. Значения I 2 для всех щелочных металлов настолько высоки, что в реально осуществимых условиях ион М 2+ не образуется. Электроотрицатель­ность щелочных элементов мала, их соединения с наиболее электроотрица­тельными элементами (хлор, кислород, азот)имеют ионное строение, как минимум в кристаллическом состоянии.

Маленький радиус иона Li + и высокая плотность заряда, являются причиной того, что соединения лития оказываются схожими по свойствам аналогичным соединениям магния (диагональное сходство) и в то же время отличаются от соединений остальных ЩМ.

Элементы IIA группы

В IIA группу Периодической системы элементов входят бериллий Ве, магний Мg и четыре щелочноземельных металла (ЩЗМ): кальций Са, стронций Sr, барий Ва и радий Ra, оксиды которых, раньше называемые «землями», при взаимодействии с водой образуют щелочи. Радий - радиоактивный элемент (α-распад, период полураспада примерно 1600 лет).

Электронная конфигурация и некоторые свойства элементов второй группы приведены в таблице ниже.

По электронному строению атомов элементы второй группы близки щелочным металлам. Они имеют конфигурацию благородного газа, дополненную

Свойство Be Mg Ca Sr Ba Ra
Заряд ядра Z 4 12 20 38 56 88
Электронная конфигурация в основном состоянии 2s 2 3s 2 4s 2 5s 2 6s 2 7s 2
Металлический радиус r мет, нм 0,112 0,160 0,197 0,215 0,217 0,223
Ионный радиус r ион *, нм 0,027 0,72 0,100 0,126 0,142 0,148
Энергия ионизации, кДж/моль: 899,5 1757 14850 737,7 1451 7733 589,8 1145 4912 549,5 1064 4138 502,8 965 3619 509,3 979 3300
Электроотрицательность 1,57 1,31 1,00 0,95 0,89 0,90

двумя s-электронами на внешнем уровне. В то же время от элементов первой группы они отличаются более высокими значениями энергии ионизации, убывающими в ряду Ве-Мg-Са-Sr- Ва. Эта тенденция нарушается при переходе от бария к радию: повышениe П и І, для Rа по сравнению с Ва объясняется эффектом инертной 6s 2 -пары.

Следует отметить, что в то время как для щелочных металлов характерна значительная разница между I 1 и I 2 для элементов второй группы подобный скачок наблюдается между I 2 и I 3 . Именно поэтому щелочные металлы в сложных веществах проявляют только степень окисления +1, а элементы второй группы +2. Наличие единственной положительной степени окисления и невозможность восстановления ионов M 2+ в водной среде придает большое сходство всем металлам s-блока.

Изменение свойств по группе следует общим закономерностям, рассмотренным на примере щелочных металлов. Элемент второго периода бериллий, подобно элементу первой группы литию, значительно отличается по своим свойствам от других элементов второй группы. Так, ион Be 2+ благодаря чрезвычайно малому ионному радиусу (0,027 нм), высокой плотности заряда, большим значениям энергий атомизации и ионизации оказывается устойчивым лишь в газовой фазе при высоких температурах. Поэтому химическая связь в бинарных соединениях бериллия даже с наиболее электроотрицательными элементами (кислород, фтором) обладает высокой долей ковалентности. Химия водных растворов бериллия также имеет свою специфику: в первой координационной сфере бериллия могут находиться лишь четыре лиганда ( 2+ , (Bе(OH) 4 ] —), что связано с малым ионным радиусом металла и отсутствием d-орбиталей.

Щелочноземельные металлы (Са, Sr, Ва, Ra) образуют единое семейство элементов, в пределах которого некоторые свойства (энергия гидратации, растворимость и термическая устойчивость солей) меняются монотонно с увеличением ионного радиуса, а многие их соединения являются изоморфными.

Элементы IIIA группы

Элементы IIIA группы: бор В, алюминий Al, галлий Ga, индий In и таллий Tl - имеют мало стабильных изотопов, что характерно для атомов с нечетными порядковыми номерами. Электронная конфигурация внешнего энергетического уровня в основном состоянии ns 2 nр 1 характеризуется наличием одного неспаренного электрона. В возбужденном состоянии элементы IIIA группы содержат три неспаренных электрона, которые, находясь в sp 2 -гибридизации, принимают участие в образовании трех ковалентных связей. При этом у атомов остается одна незанятая орбиталь. Поэтому многие ковалентные соединения элементов IIIA группы являются акцепторами электронной пары (кислоты Льюиса), т.е. могут образовывать четвертую ковалентную связь по донорно-акцепторному механизму, создавая которую, они изменяют геометрию своего окружения - она из плоской становится тетраэдрической (состояние sp 3 -гибридизации). Бор сильно отличается по свойствам от других элементов IIIA группы. Он является единственным неметаллом, химически инертен и образует ковалентные связи со фтором, азотом, углеродом и т.д. Химия бора более близка химии кремния, в этом проявляется Диагональное сходство. У атомов алюминия и его тяжелых аналогов появляются вакантные d-орбитали, возрастает радиус атома. Галлий, индий и таллий расположены в Периодической системе сразу за металлами d-блока, поэтому их часто называют постпереходными элементами. Заполнение d-оболочки сопровождается последовательным сжатием атомов, в 3d-pяду оно оказывается настолько сильным, что нивелирует возрастание радиуса при появлении четвертого энергетического уровня. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше, чем алюминия.

Для таллия, свинца, висмута и полония наиболее устойчивы соединения со степенью окисления +1, +2, +3, +4 соответственно.

Для соединений элементов IIIA группы наиболее характерна степень окисления +3. В ряду бор-алюминий-галлий-индий-таллий устойчивость таких соединений уменьшается, а устойчивость соединений со степенью окисления +1, напротив, увеличивается. Энергия связи М-Hal в галогенидах последних при переходе от легких к более тяжелым элементам М уменьшаются, амфотерные свойства оксидов и гидроксидов смещаются в сторону большей основности, склонность катионов к гидролизу (взаимодействию с водой) ослабевает.

Химия индия и особенно галлия вообще очень близка химии алюминия. Соединения этих металлов в низших степенях окисления (Ga 2 O, Ga 2 S, InCl и др.) в водных растворах диспропорционируют. Для таллия состояние +1, напротив, является наиболее устойчивым из-за инертности электронной пары 6s 2 .

Алюминий />- основной представитель металлов главной под­группы III группы Периодической системы. Свойства его анало­гов - галлия, индия и таллия - напоминают свойства алюминия, поскольку все эти элементы имеют одинаковую электронную конфигурацию внешнего уровня ns 2 n р 1 и могут проявлять степень окисления +3.

Электронное строение элементов главной подгруппы III группы

Ат. номер

Название и символ

Электронная конфигурация

Атомный радиус, нм.

ПИ, эВ

ЭО по Полингу

Степени окисления

Бор В

[Не]2 s 2 2р 1

0 , 083

Алюминий А l

3 s 2 Зр 1

0 , 143

6 , 0

1 , 5

Галлий G а

[А r] 3 d 10 4 s 2 4р 1

0 , 122

1 , +3

Индий In

[К r] 4 d 10 5 s 2 5р 1

0 , 163

5 , 8

1 , 7

1 , +3

Таллий Т l

[Хе ] 4 f 1 4 5d 10 6s 2 6р 1

0 , 170

6 , 1

1 , +3

С увеличением атомной массы усиливается металлический ха­рактер элементов. Бор - неметалл, остальные элементы (подгруппа алюминия) - металлы. Бор значительно отличается по свойствам от остальных элементов и больше похож на углерод и кремний. Остальные элементы - легкоплавкие металлы, In и Т l - чрезвычайно мягкие.

Физические свойства элементов главной подгруппы III группы

Элемент

Энергия связи , эВ

ρ , г/см 3

t пл , ° C

t кип , ° C

5,83

2 , 34

2300

3658

А l

3 , 38

2 , 70

2467

G а

2,87

5,91

29,8

2227

2 , 52

7 , 30

2080

Т l

1,89

11,85

1457

Все элементы группы трехвалентны, но с увеличением атомного номера более характерной становится валентность 1 (Т l преимущественно одновалентен).

В ряду В-А l - G а- In -Т l уменьшается кислотность и увеличи­вается основность гидроксидов R (ОН) 3 . Н 3 ВО 3 - кислота, А l (ОН) 3 и G а(ОН) 3 - амфотерные основания, In (ОН) 3 и Т l (ОН) 3 - типичные основания. Т lO Н - сильное основание.

Далее рассмотрим свойства только двух элементов: под­робно - алюминия, как типичного представителя р-металлов, чрезвычайно широко применяемого на практике, и схематично - бора, как представителя «полуметаллов» и проявляющего ано­мальные свойства по сравнению со всеми другими элементами подгруппы.

Алюминий — самый рас­пространенный металл на Земле (3-е место среди всех элемен­тов; 8% состава земной коры). В виде свободного металла в при­роде не встречается; входит в состав глиноземов (А/>l 2 О 3), бокситов (А l 2 О 3 x Н 2 О). Кроме того, алюминий обнаруживается в виде силикатов в таких породах, как глины, слюды и полевые шпаты.

Алюминий имеет единственный стабильный изотоп , бор - два: 19,9% и 80,1%.

Физические свойства. Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Алюминий имеет невысокую плотность - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл./>

Бор существует в нескольких аллотропных модификациях. Аморфный бор представляет собой темно-коричневый порошок. Кристаллический бор - серо-черный, с металлическим блеском. По твердости кристаллический бор занимает второе место (после/> алмаза) среди всех веществ. При комнатной температуре бор пло­хо проводит электрический ток; так же, как кремний, он обладает полупроводниковыми свойствами.

Химические свойства. Поверхность алюминия обычно по­крыта прочной пленкой оксида А l 2 О 3 , которая предохраняет его от взаимодействия с окружающей средой. Если эту пленку уда­ляют, то металл может энергично реагировать с водой:

2А l + 6Н 2 О = 2А l (ОН) 3 + ЗН 2 .

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

2А l + 3/2 O 2 = А l 2 О 3 + 1676 кДж.

Это обстоятельство используется для получения ряда металлов из их оксидов методом алюмотермии . Так назвали восстановле­ние порошкообразным алюминием тех металлов, у которых теп­лоты образования оксидов меньше теплоты образования А l 2 О 3 , например:

С r 2 О 3 + 2А l = 2С r + А l 2 О 3 + 539 кДж.

Бор, в отличие от алюминия, химически инертен (особенно кристаллический). Так, с кислородом он реагирует только при очень высоких температурах (> 700°С) с образованием борного ангидрида В 2 О 3:

2В + ЗО 2 = 2В 2 О 3 ,

с водой бор не реагирует ни при каких обстоятельствах. При еще более высокой температуре (> 1200°С) он взаимодействует с азо­том, давая нитрид бора (служит для изготовления огнеупорных материалов):

2B + N 2 = 2BN .

Лишь со фтором бор реагирует при комнатной температуре, реакции же с хлором и бромом протекают только при сильном нагревании (400 и 600 °С соответственно); во всех этих случаях он образует тригалогениды ВН al 3 - дымящие на воздухе лету­чие жидкости, легко гидролизующиеся водой:

2В + 3На l 2 = 2ВНа l 3 .

В результате гидролиза образуется ортоборная (борная) кислота H 3 BO 3 :

ВНа l 3 + 3Н 2 О = Н 3 ВО 3 + ЗННа l .

В отличие от бора, алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С):

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана.

Алюминий легко растворяется в соляной кислоте любой кон­центрации:

2А l + 6НС l = 2А l С l 3 + ЗН 2 .

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

В разбавленной серной кислоте алюминий растворяется с вы­делением водорода:

2А l + 3Н 2 S О 4 = А l 2 (S О 4) 3 + 3Н 2 .

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II ):

А l + 4 HN О 3 = А l (N О 3) 3 + N O + 2Н 2 О.

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов :

2А l + 2NаОН + 6Н 2 О = 2 Na [А l (ОН) 4 ] + 3Н 2 .

Кислоты, не являющиеся окислителями, с бором не реагируют и только концентрированная HNO 3 окисляет его до борной кис­лоты:

В + HNO 3(конц) + Н 2 О = Н 3 В O 3 + N O


Close