Особое место в статистическом анализе принадлежит определению среднего уровня изучаемого признака или явления. Средний уровень признака измеряют средними величинами.

Средняя величина характеризует общий количественный уровень изучаемого признака и является групповым свойством статистической совокупности. Она нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и выдвигает на первый план основное, типичное свойство изучаемого признака.

Средние величины широко используются:

1. Для оценки состояния здоровья населения: характеристики физического развития (рост, вес, окружность грудной клетки и пр.), выявления распространенности и длительности различных заболеваний, анализа демографических показателей (естественного движения населения, средней продолжительности предстоящей жизни, воспроизводства населения, средней численности населения и др.).

2. Для изучения деятельности лечебно-профилактических учреждений, медицинских кадров и оценки качества их работы, планирования и определения потребности населения в различных видах медицинской помощи (среднее число обращений или посещений на одного жителя в год, средняя длительность пребывания больного в стационаре, средняя продолжительность обследования больного, средняя обеспеченность врачами, койками и пр.).

3. Для характеристики санитарно-эпидемиологического состояния (средняя запыленность воздуха в цехе, средняя площадь на одного человека, средние нормы потребления белков, жиров и углеводов и т. д.).

4. Для определения медико-физиологических показателей в норме и патологии, при обработке лабораторных данных, для установления достоверности результатов выборочного исследования в социально-гигиенических, клинических, экспериментальных исследованиях.

Вычисление средних величин выполняется на основе вариационных рядов. Вариационный ряд – это однородная в качественном отношении статистическая совокупность, отдельные единицы которой характеризуют количественные различия изучаемого признака или явления.

Количественная вариация может быть двух типов: прерывная (дискретная) и непрерывная.

Прерывный (дискретный) признак выражается только целым числом и не может иметь никаких промежуточных значений (например, число посещений, численность населения участка, число детей в семье, степень тяжести болезни в баллах и др.).

Непрерывный признак может принимать любые значения в определенных пределах, в том числе и дробные, и выражается лишь приближенно (например, вес – для взрослых можно ограничиться килограммами, а для новорожденных – граммами; рост, артериальное давление, время, потраченное на прием больного, и т. д.).



Цифровое значение каждого отдельного признака или явления, входящего в вариационный ряд, называется вариантой и обозначается буквой V . В математической литературе встречаются и другие обозначения, например x или y.

Вариационный ряд, где каждая варианта указана один раз, называется простым. Такие ряды используются в большинстве статистических задач в случае компьютерной обработки данных.

При увеличении числа наблюдений, как правило, встречаются повторяющиеся значения вариант. В этом случае создается сгруппированный вариационный ряд , где указывается число повторений (частота, обозначается буквой «р »).

Ранжированный вариационный ряд состоит из вариант, расположенных в порядке возрастания или убывания. Как простой, так и сгруппированный ряды могут быть составлены с ранжированием.

Интервальный вариационный ряд составляют с целью упрощения последующих вычислений, выполняемых без использования компьютера, при очень большом числе единиц наблюдения (более 1000).

Непрерывный вариационный ряд включает значения вариант, которые могут выражаться любыми значениями.

Если в вариационном ряде значения признака (варианты) заданы в виде отдельных конкретных чисел, то такой ряд называют дискретным .

Общими характеристиками значений признака, отражаемого в вариационном ряду, являются средние величины. Среди них наиболее применяемые: средняя арифметическая величина М, мода Мо и медиана Me. Каждая из этих характеристик своеобразна. Они не могут подменить друг друга и лишь в совокупности достаточно полно и в сжатой форме представляют собой особенности вариационного ряда.

Модой (Мо) называют значение наиболее часто встречающейся варианты.

Медиана (Me) – это значение варианты, делящей ранжированный вариационный ряд пополам (с каждой стороны медианы находится половина вариант). В редких случаях, когда имеется симметричный вариационный ряд, мода и медиана равны между собой и совпадают со значением средней арифметической.

Наиболее типичной характеристикой значений вариант является средняя арифметическая величина(М ). В математической литературе она обозначается .

Средняя арифметическая величина (M, ) – это общая количественная характеристика определенного признака изучаемых явлений, составляющих качественно однородную статистическую совокупность. Различают среднюю арифметическую простую и взвешенную. Средняя арифметическая простая вычисляется для простого вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в данный вариационный ряд. Вычисления проводятся по формуле:

где: М - средняя арифметическая простая;

ΣV - сумма вариант;

n - число наблюдений.

В сгруппированном вариационном ряду определяют взвешенную среднюю арифметическую. Формула ее вычисления:

где: М - средняя арифметическая взвешенная;

ΣVp - сумма произведений вариант на их частоты;

n - число наблюдений.

При большом числе наблюдений в случае ручных вычислений может применяться способ моментов.

Средняя арифметическая имеет следующие свойства:

· сумма отклонений вариант от средней (Σd ) равна нулю (см. табл. 15);

· при умножении (делении) всех вариант на один и тот же множитель (делитель) средняя арифметическая умножается (делится) на тот же множитель (делитель);

· если прибавить (вычесть) ко всем вариантам одно и то же число, средняя арифметическая увеличивается (уменьшается) на это же число.

Средние арифметические величины, взятые сами по себе, без учета вариабельности рядов, из которых они вычислены, могут не в полной мере отражать свойства вариационного ряда, в особенности когда необходимо сопоставление с другими средними. Близкие по значению средние могут быть получены из рядов с различной степенью рассеяния. Чем ближе друг к другу отдельные варианты по своей количественной характеристике, тем меньше рассеяние (колеблемость, вариабельность) ряда, тем типичнее его средняя.

Основными параметрами, которые позволяют оценить вариабельность признака, являются:

· Размах;

· Амплитуда;

· Среднее квадратическое отклонение;

· Коэффициент вариации.

Приблизительно о колеблемости признака можно судить по размаху и амплитуде вариационного ряда. Размах указывает на максимальную (V max) и минимальную (V min) варианты в ряду. Амплитуда (A m) является разностью этих вариант: A m = V max - V min .

Основной, общепринятой мерой колеблемости вариационного ряда являются дисперсия (D ). Но наиболее часто применяется более удобный параметр, вычисляемый на основе дисперсии - среднее квадратическое отклонение (σ ). Оно учитывает величину отклонения (d ) каждой варианты вариационного ряда от его средней арифметической (d=V - M ).

Поскольку отклонения вариант от средней могут быть положительными и отрицательными, то при суммировании они дают значение «0» (Sd=0 ). Чтобы избежать этого, величины отклонения (d ) возводятся во вторую степень и усредняются. Таким образом, дисперсия вариационного ряда является средним квадратом отклонений вариант от средней арифметической и вычисляется по формуле:

Она является важнейшей характеристикой вариабельности и применяется для вычисления многих статистических критериев.

Поскольку дисперсия выражается квадратом отклонений, ее величина не может использоваться в сопоставлении со средней арифметической. Для этих целей применяется среднее квадратическое отклонение , которое обозначается знаком «Сигма» (σ ). Оно характеризует среднее отклонение всех вариант вариационного ряда от средней арифметической величины в тех же единицах, что и сама средняя величина, поэтому они могут использоваться совместно.

Среднее квадратическое отклонение определяют по формуле:

Указанная формула применяется при числе наблюдений (n ) больше 30. При меньшем числе n значение среднего квадратического отклонения будет иметь погрешность, связанную с математическим смещением (n - 1). В связи с этим, более точный результат может быть получен с помощью учета такого смещения в формуле расчета стандартного отклонения:

стандартное отклонение (s ) – это оценка среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии.

При значениях n > 30 среднее квадратическое отклонение (σ ) и стандартное отклонение (s ) будут одинаковыми (σ =s ). Поэтому в большинстве практических пособий эти критерии рассматриваются как разнозначные. В программе Excel вычисление стандартного отклонения может быть выполнено функцией =СТАНДОТКЛОН(диапазон). А с целью расчета среднего квадратического отклонения требуется создать соответствующую формулу.

Среднее квадратическое или стандартное отклонение позволяет определить, насколько значения признака могут отличаться от среднего значения. Предположим, существуют два города с одинаковой средней дневной температурой в летний период. Один их этих городов расположен на побережье, а другой на континенте. Известно, что в городах, расположенных на побережье, различия дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднее квадратическое отклонение дневных температур у прибрежного города будет меньше, чем у второго города. На практике это означает, что средняя температура воздуха каждого конкретного дня в городе, расположенного на континенте будет сильнее отличаться от среднего значения, чем в городе на побережье. Кроме того стандартное отклонение позволяет оценить возможные отклонения температуры от средней с требуемым уровнем вероятности.

Согласно теории вероятности, в явлениях, подчиняющихся нормальному закону распределения, между значениями средней арифметической, среднего квадратического отклонения и вариантами существует строгая зависимость (правило трех сигм ). Например, 68,3% значений варьирующего признака находятся в пределах М ± 1σ , 95,5% - в пределах М ± 2σ и 99,7% - в пределах М ± 3σ .

Величина среднего квадратического отклонения позволяет судить о характере однородности вариационного ряда и исследуемой группы. Если величина среднего квадратического отклонения небольшая, то это свидетельствует о достаточно высокой однородности изучаемого явления. Среднюю арифметическую в таком случае следует признать вполне характерной для данного вариационного ряда. Однако слишком малая величина сигмы заставляет думать об искусственном подборе наблюдений. При очень большой сигме средняя арифметическая в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности изучаемого признака или явления или о неоднородности исследуемой группы. Однако сопоставление величины среднего квадратического отклонения возможно только для признаков одинаковой размерности. Действительно, если сравнивать разнообразие веса новорожденных детей и взрослых, мы всегда получим более высокие значения сигмы у взрослых.

Сравнение вариабельности признаков различной размерности может быть выполнено с помощью коэффициента вариации . Он выражает разнообразие в процентах от средней величины, что позволяет производить сравнение различных признаков. Коэффициент вариации в медицинской литературе обозначается знаком «С », а в математической «v » и вычисляемого по формуле:

Значения коэффициента вариации менее 10% свидетельствует о малом рассеянии, от 10 до 20% – о среднем, более 20% – о сильном рассеянии вариант вокруг средней арифметической.

Средняя арифметическая величина, как правило, вычисляется на основе данных выборочной совокупности. При повторных исследованиях под влиянием случайных явлений средняя арифметическая может изменяться. Это обусловлено тем, что исследуется, как правило, только часть возможных единиц наблюдения, то есть выборочная совокупность. Информация обо всех возможных единицах, представляющих изучаемое явление, может быть получена при изучении всей генеральной совокупности, что не всегда возможно. В то же время с целью обобщения данных эксперимента представляет интерес величина средней в генеральной совокупности. Поэтому для формулировки общего вывода об изучаемом явлении, результаты, полученные на основе выборочной совокупности, должны быть, перенесены на генеральную совокупность статистическими методами.

Чтобы определить степень совпадения выборочного исследования и генеральной совокупности, необходимо оценить величину ошибки, которая неизбежно возникает при выборочном наблюдении. Такая ошибка называется «Ошибкой репрезентативности » или «Средней ошибкой средней арифметической». Она фактически является разностью между средними, полученными при выборочном статистическом наблюдении, и аналогичными величинами, которые были бы получены при сплошном исследовании того же объекта, т.е. при изучении генеральной совокупности. Поскольку выборочная средняя является случайной величиной, такой прогноз выполняется с приемлемым для исследователя уровнем вероятности. В медицинских исследованиях он составляет не менее 95%.

Ошибку репрезентативности нельзя смешивать с ошибками регистрации или ошибками внимания (описки, просчеты, опечатки и др.), которые должны быть сведены до минимума адекватной методикой и инструментами, применяемыми при проведении эксперимента.

Величина ошибки репрезентативности зависит как от объема выборки, так и от вариабельности признака. Чем больше число наблюдений, тем ближе выборка к генеральной совокупности и тем меньше ошибка. Чем более изменчив признак, тем больше величина статистической ошибки.

На практике для определения ошибки репрезентативности в вариационных рядах пользуются следующей формулой:

где: m – ошибка репрезентативности;

σ – среднее квадратическое отклонение;

n – число наблюдений в выборке.

Из формулы видно, что размер средней ошибки прямо пропорционален среднему квадратическому отклонению, т. е. вариабельности изучаемого признака, и обратно пропорционален корню квадратному из числа наблюдений.

При выполнении статистического анализа на основе вычисления относительных величин построение вариационного ряда не является обязательным. При этом определение средней ошибки для относительных показателей может выполняться по упрощенной формуле:

где: Р – величина относительного показателя, выраженного в процентах, промилле и т.д.;

q – величина, обратная Р и выраженная как (1-Р), (100-Р), (1000-Р) и т. д., в зависимости от основания, на которое рассчитан показатель;

n – число наблюдений в выборочной совокупности.

Однако, указанная формула вычисления ошибки репрезентативности для относительных величин может применяться только в том случае, когда значение показателя меньше его основания. В ряде случаев расчета интенсивных показателей такое условие не соблюдается, и показатель может выражаться числом более 100% или 1000%о. В такой ситуации выполняется построение вариационного ряда и вычисление ошибки репрезентативности по формуле для средних величин на основе среднего квадратического отклонения.

Прогнозирование величины средней арифметической в генеральной совокупности выполняется с указанием двух значений – минимального и максимального. Эти крайние значения возможных отклонений, в пределах которых может колебаться искомая средняя величина генеральной совокупности, называются «Доверительные границы ».

Постулатами теории вероятностей доказано, что при нормальном распределении признака с вероятностью 99,7%, крайние значения отклонений средней будут не больше величины утроенной ошибки репрезентативности (М ± 3m ); в 95,5% – не больше величины удвоенной средней ошибки средней величины (М ± 2m ); в 68,3% – не больше величины одной средней ошибки (М ± 1m ) (рис. 9).

P%

Рис. 9. Плотность вероятностей нормального распределения.

Отметим, что приведенное выше утверждение справедливо только для признака, который подчиняется нормальному закону распределения Гаусса.

Большинство экспериментальных исследований, в том числе и в области медицины, связано с измерениями, результаты которых могут принимать практически любые значения в заданном интервале, поэтому, как правило, описываются моделью непрерывных случайных величин. В связи с этим в большинстве статистических методов рассматриваются непрерывные распределения. Одним из таких распределений, имеющим основополагающую роль в математической статистике, является нормальное, или гауссово, распределение .

Это объясняется целым рядом причин.

1. Прежде всего, многие экспериментальные наблюдения можно успешно описать с помощью нормального распределения. Следует сразу же отметить, что не существует распределений эмпирических данных, которые были бы в точности нормальными, поскольку нормально распределенная случайная величина находится в пределах от до , чего никогда не встречается на практике. Однако нормальное распределение очень часто хорошо подходит как приближение.

Проводятся ли измерения веса, роста и других физиологических параметров организма человека - везде на результаты оказывает влияние очень большое число случайных факторов (естественные причины и ошибки измерения). Причем, как правило, действие каждого из этих факторов незначительно. Опыт показывает, что результаты именно в таких случаях будут распределены приближенно нормально.

2. Многие распределения, связанные со случайной выборкой, при увеличении объема последней переходят в нормальное.

3. Нормальное распределение хорошо подходит в качестве приближенного описания других непрерывных распределений (например, асимметричных).

4. Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивших его широкое применение в статистике.

В то же время следует отметить, что в медицинских данных встречается много экспериментальных распределений, описание которых моделью нормального распределения невозможно. Для этого в статистке разработаны методы, которые принято называть «Непараметрическими».

Выбор статистического метода, который подходит для обработки данных конкретного эксперимента, должен производиться в зависимости от принадлежности полученных данных к нормальному закону распределения. Проверка гипотезы на подчинение признака нормальному закону распределения выполняется с помощью гистограммы распределения частот (графика), а также ряда статистических критериев. Среди них:

Критерий асимметрии (b );

Критерий проверки на эксцесс (g );

Критерий Шапиро – Уилкса (W ) .

Анализ характера распределения данных (его еще называют проверкой на нормальность распределения) осуществляется по каждому параметру. Чтобы уверенно судить о соответствии распределения параметра нормальному закону, необходимо достаточно большое число единиц наблюдения (не менее 30 значений).

Для нормального распределения критерии асимметрии и эксцесса принимают значение 0. Если распределение смещено вправо b > 0 (положительная асимметрия), при b < 0 - график распределения смещен влево (отрицательная асимметрия). Критерий асимметрии проверяет форму кривой распределения. В случае нормального закона g =0. При g > 0 кривая распределения острее, если g < 0 пик более сглаженный, чем функция нормального распределения.

Для проверки на нормальность по критерию Шапиро – Уилкса требуется найти значение этого критерия по статистическим таблицам при необходимом уровне значимости и в зависимости от числа единиц наблюдения (степеней свободы). Приложение 1. Гипотеза о нормальности отвергается при малых значениях этого критерия, как правило, при w <0,8.

Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку.

Назначение сервиса . С помощью онлайн-калькулятора Вы сможете:

  • построить вариационный ряд , построить гистограмму и полигон;
  • найти показатели вариации (среднюю, моду (в т.ч. и графическим способом), медиану, размах вариации, квартили, децили, квартильный коэффициент дифференциации, коэффициент вариации и другие показатели);

Инструкция . Для группировки ряда необходимо выбрать вид получаемого вариационного ряда (дискретный или интервальный) и указать количество данных (количество строк). Полученное решение сохраняется в файле Word (см. пример группировки статистических данных).

Если группировка уже осуществлена и заданы дискретный вариационный ряд или интервальный ряд , то необходимо воспользоваться онлайн-калькулятором Показатели вариации . Проверка гипотезы о виде распределения производится с помощью сервиса Изучение формы распределения .

Виды статистических группировок

Вариационный ряд . В случае наблюдений дискретной случайной величины одно и то же значение можно встретить несколько раз. Такие значения x i случайной величины записывают с указанием n i числа раз его появления в n наблюдениях, это и есть частота данного значения.
В случае непрерывной случайной величины на практике применяют группировку.
  1. Типологическая группировка – это разделение исследуемой качественно разнородной совокупности на классы, социально–экономические типы, однородные группы единиц. Для построения данной группировки используйте параметр Дискретный вариационный ряд.
  2. Структурной называется группировка , в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому–либо варьирующему признаку. Для построения данной группировки используйте параметр Интервальный ряд.
  3. Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой (см. аналитическая группировка ряда).

Пример №1 . По данным таблицы 2 постройте ряды распределения по 40 коммерческим банкам РФ. По полученным рядам распределения определите: прибыль в среднем на один коммерческий банк, кредитные вложения в среднем на один коммерческий банк, модальное и медианное значение прибыли; квартили, децили, размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, коэффициент вариации.

Решение :
В разделе «Вид статистического ряда» выбираем Дискретный ряд. Нажимаем Вставить из Excel . Количество групп: по формуле Стэрджесса

Принципы построения статистических группировок

Ряд наблюдений, упорядоченных по возрастанию, называется вариационным рядом . Группировочным признаком называется признак, по которому производится разбивка совокупности на отдельные группы. Его называют основанием группировки. В основание группировки могут быть положены как количественные, так и качественные признаки.
После определения основания группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность.

При использовании персональных компьютеров для обработки статистических данных группировка единиц объекта производится с помощью стандартных процедур.
Одна из таких процедур основана на использовании формулы Стерджесса для определения оптимального числа групп:

k = 1+3,322*lg(N)

Где k – число групп, N – число единиц совокупности.

Длину частичных интервалов вычисляют как h=(x max -x min)/k

Затем подсчитывают числа попаданий наблюдений в эти интервалы, которые принимают за частоты n i . Малочисленные частоты, значения которых меньше 5 (n i < 5), следует объединить. в этом случае надо объединить и соответствующие интервалы.
В качестве новых значений вариант берут середины интервалов x i =(c i-1 +c i)/2.

Пример №3 . В результате 5%-ной собственно-случайной выборки получено следующее распределение изделий по содержанию влаги. Рассчитайте: 1) средний процент влажности; 2) показатели, характеризующие вариацию влажности.
Решение получено с помощью калькулятора : Пример №1

Построить вариационный ряд. По найденному ряду построить полигон распределения, гистограмму, кумуляту. Определить моду и медиану.
Скачать решение

Пример . По результатам выборочного наблюдения (выборка А приложение):
а) составьте вариационный ряд;
б) вычислите относительные частоты и накопленные относительные частоты;
в) постройте полигон;
г) составьте эмпирическую функцию распределения;
д) постройте график эмпирической функции распределения;
е) вычислите числовые характеристики: среднее арифметическое, дисперсию, среднее квадратическое отклонение. Решение

На основе данных, приведенных в Таблице 4 (Приложение 1) и соответствующих Вашему варианту, выполнить:

  1. На основе структурной группировки построить вариационный частотный и кумулятивный ряды распределения, используя равные закрытые интервалы, приняв число групп равным 6. Результаты представить в виде таблицы и изобразить графически.
  2. Проанализировать вариационный ряд распределения, вычислив:
    • среднее арифметическое значение признака;
    • моду, медиану, 1-ый квартиль, 1-ый и 9-тый дециль;
    • среднее квадратичное отклонение;
    • коэффициент вариации.
  3. Сделать выводы.

Требуется: ранжировать ряд, построить интервальный ряд распределения, вычислить среднее значение, колеблемость среднего значения, моду и медиану для ранжированного и интервального рядов.

На основе исходных данных построить дискретный вариационный ряд ; представить его в виде статистической таблицы и статистических графиков. 2). На основе исходных данных построить интервальный вариационный ряд с равными интервалами. Число интервалов выбрать самостоятельно и объяснить этот выбор. Представить полученный вариационный ряд в виде статистической таблицы и статистических графиков. Указать виды примененных таблиц и графиков.

С целью определения средней продолжительности обслуживания клиентов в пенсионном фонде, число клиентов которого очень велико, по схеме собственно-случайной бесповторной выборки проведено обследование 100 клиентов. Результаты обследования представлены в таблице. Найти:
а) границы, в которых с вероятностью 0.9946 заключено среднее время обслуживания всех клиентов пенсионного фонда;
б) вероятность того, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине);
в) объем повторной выборки, при котором с вероятностью 0.9907 можно утверждать, что доля всех клиентов фонда с продолжительностью обслуживания менее 6 минут отличается от доли таких клиентов в выборке не более чем на 10% (по абсолютной величине).
2. По данным задачи 1, используя X 2 критерий Пирсона, на уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – время обслуживания клиентов – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
Скачать решение

Дана выборка из 100 элементов. Необходимо:

  1. Построить ранжированный вариационный ряд;
  2. Найти максимальный и минимальный члены ряда;
  3. Найти размах вариации и количество оптимальных промежутков для построения интервального ряда. Найти длину промежутка интервального ряда;
  4. Построить интервальный ряд. Найти частоты попадания элементов выборки в составленные промежутки. Найти средние точки каждого промежутка;
  5. Построить гистограмму и полигон частот. Сравнить с нормальным распределением (аналитически и графически);
  6. Построить график эмпирической функции распределения;
  7. Рассчитать выборочные числовые характеристики: выборочное среднее и центральный выборочный момент;
  8. Рассчитать приближенные значения среднего квадратического отклонения, асимметрии и эксцесса (пользуясь пакетом анализа MS Excel). Сравнить приближенные расчетные значения с точными (рассчитанные по формулам MS Excel);
  9. Сравнить выборочные графические характеристики с соответствующими теоретическими.
Скачать решение

Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб. По исходным данным:
Задание 13.1.
13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения.
13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую, среднее квадратическое отклонение, дисперсию, коэффициент вариации V. Сделайте выводы.
Задание 13.2.
13.2.1. Определите границы, в которых с вероятностью 0.997 заключена сумма прибыли одного предприятия в генеральной совокупности.
13.2.2. Используя x2-критерий Пирсона , при уровне значимости α проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону.
Задание 13.3.
13.3.1. Определите коэффициенты выборочного уравнения регрессии.
13.3.2. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии.
13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока .
Методические рекомендации . Задание 13.3 выполняется с помощью этого сервиса .
Скачать решение

Задача . Следующие данные представляют собой затраты времени клиентов на заключение договоров. Построить интервальный вариационный ряд представленных данных, гистограмму, найти несмещенную оценку математического ожидания, смещенную и несмещенную оценку дисперсии.

Пример . По данным таблицы 2:
1) Постройте ряды распределения по 40 коммерческим банкам РФ:
А) по величине прибыли;
Б) по величине кредитных вложений.
2) По полученным рядам распределения определите:
А) прибыль в среднем на один коммерческий банк;
Б) кредитные вложения в среднем на один коммерческий банк;
В) модальное и медианное значение прибыли; квартили, децили;
Г) модальное и медианное значение кредитных вложений.
3) По полученным в п. 1 рядам распределения рассчитайте:
а) размах вариации;
б) среднее линейное отклонение;
в) среднее квадратическое отклонение;
г) коэффициент вариации.
Необходимые расчеты оформите в табличной форме. Результаты проанализируйте. Сделайте выводы.
Постройте графики полученных рядов распределения. Графически определите моду и медиану.

Решение:
Для построения группировка с равными интервалами воспользуемся сервисом Группировка статистических данных .

Рисунок 1 – Ввод параметров

Описание параметров
Количество строк : количество исходных данных. Если размерность ряда небольшая, укажите его количество. Если выборка достаточно объемная, то нажмите кнопку Вставить из Excel .
Количество групп : 0 – число групп будет определяться по формуле Стэрджесса.
Если задано конкретное число групп, укажите его (например, 5).
Вид ряда : Дискретный ряд.
Уровень значимости : например, 0.954 . Этот параметр задается для определения доверительного интервала среднего значения.
Выборка : Например, проведена 10% -ная механическая выборка. Указываем число 10 . Для наших данных указываем 100 .

В результате освоения дайной главы студент должен: знать

  • показатели вариации и их взаимосвязь;
  • основные законы распределения признаков;
  • сущность критериев согласия; уметь
  • рассчитывать показатели вариации и критерии согласия;
  • определять характеристики распределений;
  • оценивать основные числовые характеристики статистических рядов распределения;

владеть

  • методами статистического анализа рядов распределения;
  • основами дисперсионного анализа;
  • приемами проверки статистических рядов распределения на соответствие основным законам распределения.

Показатели вариации

При статистическом исследовании признаков различных статистических совокупностей большой интерес представляет изучение вариации признака отдельных статистических единиц совокупности, а также характера распределения единиц по данному признаку. Вариация - это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение. По степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию. Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

Результаты сводки и группировки материалов статистического наблюдения, оформленные в виде статистических рядов распределения, представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по профессии, по полу, по цвету и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным (распределение по росту, весу, по размеру заработной платы и т.д.). Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, подсчитать число единиц совокупности с этими значениями (частоту), результаты оформить в таблицу.

Вместо частоты варианта возможно применение ее отношения к общему объему наблюдений, которое называется частостью (относительной частотой).

Выделяют два вида вариационного ряда: дискретный и интервальный. Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести число работников на предприятии, тарифный разряд, количество детей в семье и т.д. Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака. Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака возможно построение интервального вариационного ряда. Таблица при построении интервального вариационного ряда также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота). Частота (частота повторения) - число повторений отдельного варианта значений признака. Интервалы могут быть закрытые и открытые. Закрытые интервалы ограничены с обеих сторон, т.е. имеют границу как нижнюю («от»), так и верхнюю («до»). Открытые интервалы имеют какую-либо одну границу: либо верхнюю, либо нижнюю. Если варианты расположены по возрастанию или убыванию, то ряды называются ранжированными.

Для вариационных рядов существует два типа вариантов частотных характеристик: накопленная частота и накопленная частость. Накопленная частота показывает, в скольких наблюдениях величина признака приняла значения меньше заданного. Накопленная частота определяется путем суммирования значений частоты признака по данной группе со всеми частотами предшествующих групп. Накопленная частость характеризует удельный вес единиц наблюдения, у которых значения признака не превосходят верхнюю границу дайной группы. Таким образом, накопленная частость показывает удельный вес вариант в совокупности, имеющих значение не больше данного. Частота, частость, абсолютная и относительная плотности, накопленные частота и частость являются характеристиками величины варианта.

Вариации признака статистических единиц совокупности, а также характер распределения изучаются с помощью показателей и характеристик вариационного ряда, к числу которых относятся средний уровень ряда, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициенты осцилляции, вариации, асимметрии, эксцесса и др.

Для характеристики центра распределения применяются средние величины. Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Однако возможны случаи совпадения средних арифметических при разном характере распределения, поэтому в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода, медиана, а также квантили, которые делят ряд распределения на равные части (квартили, децили, перцентили и т.д.).

Мода - это значение признака, которое встречается в ряду распределения чаще, чем другие его значения. Для дискретных рядов - это варианта, имеющая наибольшую частоту. В интервальных вариационных рядах с целью определения моды необходимо определить прежде всего интервал, в котором она находится, так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами - но наибольшей плотности распределения. Затем для определения моды в рядах с равными интервалами применяют формулу

где Мо - значение моды; х Мо - нижняя граница модального интервала; h - ширина модального интервала; / Мо - частота модального интервала; / Mo j - частота домодального интер- вала; / Мо+1 - частота послемодального интервала, а для ряда с неравными интервалами в данной формуле расчета вместо частот / Мо, / Мо, / Мо следует использовать плотности распределения Ум 0 _| , Ум 0> УМо+"

Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным (полимодальным, мультимодальным), в случае двух мод - бимодальным. Как правило, многомодальность указывает, что исследуемое распределение не подчиняется закону нормального распределения. Для однородных совокупностей, как правило, характерны одновершинные распределения. Многовершинность свидетельствует также о неоднородности изучаемой совокупности. Появление двух и более вершин делает необходимой перегруппировку данных с целью выделения более однородных групп.

В интервальном вариационном ряду моду можно определить графически с помощью гистограммы. Для этого из верхних точек самого высокого столбца гистограммы до верхних точек двух смежных столбцов проводят две пересекающиеся линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, является модой. Во многих случаях при характеристике совокупности в качестве обобщенного показателя отдается предпочтение моде, а не средней арифметической.

Медиана - это центральное значение признака, им обладает центральный член ранжированного ряда распределения. В дискретных рядах, чтобы найти значение медианы, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица, число делится на два. При четном числе единиц в ряду будет две медианные единицы, поэтому в этом случае медиана определяется как средняя из значений двух медианных единиц. Таким образом, медианой в дискретном вариационном ряду является значение, которое делит ряд на две части, содержащие одинаковое число вариантов.

В интервальных рядах после определения порядкового номера медианы отыскивается медиальный интервал по накопленным частотам (частостям), а затем при помощи формулы расчета медианы определяется значение самой медианы:

где Me - значение медианы; х Ме - нижняя граница медианного интервала; h - ширина медианного интервала; - сумма частот ряда распределения; /Д - накопленная частота домедианного интервала; / Ме - частота медианного интервала.

Медиану можно отыскать графически с помощью куму- ляты. Для этого на шкале накопленных частот (частостей) кумуляты из точки, соответствующей порядковому номеру медианы, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Далее из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведенной ординате (перпендикуляру), является медианой.

Медиана характеризуется следующими свойствами.

  • 1. Она не зависит от тех значений признака, которые расположены по обе стороны от нее.
  • 2. Она имеет свойство минимальности, которое заключается в том, что сумма абсолютных отклонений значений признака от медианы представляет собой минимальную величину по сравнению с отклонением значений признака от любой другой величины.
  • 3. При объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.

Эти свойства медианы широко используются при проектировании расположения пунктов массового обслуживания - школ, поликлиник, автозаправочных станций, водозаборных колонок и т.д. Например, если в определенном квартале города предполагается построить поликлинику, то расположить ее целесообразнее в такой точке квартала, которая делит пополам не длину квартала, а число жителей.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить симметричность распределения. Если х Me то имеет место правосторонняя асимметрия ряда. При нормальном распределении х - Me - Мо.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

где Me - значение медианы; Мо - значение моды; х арифм - значение средней арифметической.

Если возникает необходимость изучить структуру вариационного ряда более подробно, то вычисляют значения признака, аналогичные медиане. Такие значения признака делят все единицы распределения на равные численности, их называют квантилями или градиентами. Квантили подразделяются на квартили, децили, перцентили и т.п.

Квартили делят совокупность на четыре равные части. Первую квартиль вычисляют аналогично медиане по формуле расчета первой квартили, предварительно определив первый квартальный интервал:

где Qi - значение первой квартили; x Q ^ - нижняя граница первого квартильного интервала; h - ширина первого квартального интервала; /, - частоты интервального ряда;

Накопленная частота в интервале, предшествующем первому квартильиому интервалу; Jq { - частота первого квартильного интервала.

Первая квартиль показывает, что 25% единиц совокупности меньше ее значения, а 75% - больше. Вторая квартиль равна медиане, т.е. Q 2 = Me.

По аналогии рассчитывают третью квартиль, предварительно отыскав третий квартальный интервал:

где - нижняя граница третьего квартильного интервала; h - ширина третьего квартильного интервала; /, - частоты интервального ряда; /X" - накопленная частота в интервале, предшествующем

г

третьему квартильиому интервалу; Jq - частота третьего квартильного интервала.

Третья квартиль показывает, что 75% единиц совокупности меньше ее значения, а 25% - больше.

Разность между третьей и первой квартилями представляет собой межквартильный интервал:

где Aq - значение межквартильного интервала; Q 3 - значение третьей квартили; Q, - значение первой квартили.

Децили делят совокупность на 10 равных частей. Дециль - это такое значение признака в ряду распределения, которому соответствуют десятые доли численности совокупности. По аналогии с квартилями первый дециль показывает, что 10% единиц совокупности меньше его значения, а 90% - больше, а девятый дециль выявляет, что 90% единиц совокупности меньше его значения, а 10% - больше. Соотношение девятого и первого децилей, т.е. децильный коэффициент, широко применяется при изучении дифференциации доходов для измерения соотношения уровней доходов 10% наиболее обеспеченного и 10% наименее обеспеченного населения. Перцентили делят ранжированную совокупность на 100 равных частей. Расчет, значение и применение перцентилей аналогичны децилям.

Квартили, децили и другие структурные характеристики можно определить графически по аналогии с медианой с помощью кумуляты.

Для измерения размера вариации используются следующие показатели: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Величина размаха вариации целиком зависит от случайности распределения крайних членов ряда. Этот показатель представляет интерес в тех случаях, когда важно знать, какова амплитуда колебаний значений признака:

где R - значение размаха вариации; х тах - максимальное значение признака; х тт - минимальное значение признака.

При расчете размаха вариации значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда. Этого недостатка лишены показатели, представляющие собой средние, полученные из отклонений индивидуальных значений признака от их средней величины: среднее линейное отклонение и среднее квадратическое отклонение. Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений отдельных вариантов от их средней величины.

Среднее линейное отклонение для несгруппированных данных

где / пр - значение среднего линейного отклонения; х,- - значение признака; х - п - число единиц совокупности.

Среднее линейное отклонение сгруппированного ряда

где / вз - значение среднего линейного отклонения; х, - значение признака; х - среднее значение признака для изучаемой совокупности; / - число единиц совокупности в отдельной группе.

Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Среднее линейное отклонение в зависимости от группировки анализируемых данных рассчитывается по различным формулам: для сгруппированных и несгруниированных данных. Среднее линейное отклонение в силу его условности отдельно от других показателей вариации применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе оборота внешней торговли, состава работающих, ритмичности производства, качества продукции с учетом технологических особенностей производства и т.п.).

Среднее квадратическое отклонение характеризует, на сколько в среднем отклоняются индивидуальные значения изучаемого признака от среднего значения по совокупности, и выражается в единицах измерения изучаемого признака. Среднее квадратическое отклонение, являясь одной из основных мер вариации, широко используется при оценке границ вариации признака в однородной совокупности, при определении значений ординат кривой нормального распределения, а также в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик. Среднее квадратическое отклонение но несгруипированным данным исчисляется по следующему алгоритму: каждое отклонение от средней возводится в квадрат, все квадраты суммируются, после чего сумма квадратов делится на число членов ряда и из частного извлекается квадратный корень:

где a Iip - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; п - число единиц совокупности.

Для сгруппированных анализируемых данных среднее квадратическое отклонение данных рассчитывается по взвешенной формуле

где - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; f x - число единиц совокупности в отдельной группе.

Выражение под корнем в обоих случаях носит название дисперсии. Таким образом, дисперсия вычисляется как средний квадрат отклонений значений признака от их средней величины. Для невзвешенных (простых) значений признака дисперсия определяется следующим образом:

Для взвешенных значений признака

Существует также специальный упрощенный способ расчета дисперсии: в общем виде

для невзвешенных (простых) значений признака для взвешенных значений признака
с использованием метода отсчета от условного нуля

где а 2 - значение дисперсии; х,- - значение признака; х - среднее значение признака, h - величина группового интервала, т 1 - веса (А =

Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации. Она измеряется в единицах, соответствующих квадрату единиц измерения изучаемого признака.

Дисперсия имеет следующие свойства.

  • 1. Дисперсия постоянной величины равна нулю.
  • 2. Уменьшение всех значений признака на одну и ту же величину Л не меняет величины дисперсии. Это означает, что средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.
  • 3. Уменьшение веех значений признака в k раз уменьшает дисперсию в k 2 раз, а среднее квадратическое отклонение - в k раз, т.е. все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.
  • 4. Если исчислить средний квадрат отклонений от любой величины А у в той или иной степени отличающейся от средней арифметической, то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие - нулем (0). Долю единиц, обладающих изучаемым свойством, обозначают через Р, а долю единиц, не обладающих этим свойством, - через G. Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (Р), на долю единиц, данным свойством не обладающих (G). Наибольшая вариация совокупности достигается в случаях, когда часть совокупности, составляющая 50% от всего объема совокупности, обладает признаком, а другая часть совокупности, также равная 50%, не обладает данным признаком, при этом дисперсия достигает максимального значения, равного 0,25, т.е. Р = 0,5, G = 1 - Р = 1 - 0,5 = 0,5 и о 2 = 0,5 0,5 = 0,25. Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Практическое применение дисперсии альтернативного признака состоит в построении доверительных интервалов при проведении выборочного наблюдения.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В практике статистики часто возникает необходимость сравнения вариаций различных признаков. Например, интересным является сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях. Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средними арифметическими используются показатели вариации - коэффициент осцилляции, линейный коэффициент вариации и коэффициент вариации, которые показывают меру колебаний крайних значений вокруг средней.

Коэффициент осцилляции :

где V R - значение коэффициента осцилляции; R - значение размаха вариации; х -

Линейный коэффициент вариации".

где Vj - значение линейного коэффициента вариации; I - значение среднего линейного отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент вариации :

где V a - значение коэффициента вариации; а - значение среднего квадратического отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент осцилляции - это процентное отношение размаха вариации к среднему значению изучаемого признака, а линейный коэффициент вариации - это отношение среднего линейного отклонения к среднему значению изучаемого признака, выраженное в процентах. Коэффициент вариации представляет собой процентное отношение среднего квадратического отклонения к среднему значению изучаемого признака. Как величина относительная, выраженная в процентах, коэффициент вариации применяется для сравнения степени вариации различных признаков. С помощью коэффициента вариации оценивается однородность статистической совокупности. Если коэффициент вариации меньше 33%, то исследуемая совокупность является однородной, а вариация слабой. Если коэффициент вариации больше 33%, то исследуемая совокупность является неоднородной, вариация сильной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности. Кроме того, коэффициенты вариации используются для сравнения колеблемости одного признака в различных совокупностях. Например, для оценки вариации стажа работы работников на двух предприятиях. Чем больше значение коэффициента, тем вариация признака существеннее.

На основе рассчитанных квартилей имеется возможность рассчитать также относительный показатель квартальной вариации по формуле

где Q2 и

Межквартильный размах определяется по формуле

Квартильное отклонение применяется вместо размаха вариации, чтобы избежать недостатков, связанных с использованием крайних значений:

Для неравноинтервальпых вариационных рядов рассчитывается также плотность распределения. Она определяется как частное от деления соответствующей частоты или частости на величину интервала. В неравноинтервальных рядах используются абсолютная и относительная плотности распределения. Абсолютная плотность распределения - это частота, приходящаяся на единицу длины интервала. Относительная плотность распределения - частость, приходящаяся на единицу длины интервала.

Все вышеотмеченное справедливо для рядов распределения, закон распределения которых хорошо описывается нормальным законом распределения или близок к нему.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности непостоянны, более или менее различаются между собой.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака.

Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации.

Задачи статистического изучения вариации:

  • 1) изучение характера и степени вариации признаков у отдельных единиц совокупности;
  • 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности.

В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация.

Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. Ермолаев О.Ю. Математическая статистика для психологов: Учебник [Текст]/ О.Ю. Ермолаев. - М.: Изд-во Флинта Московского психолого-социального института, 2012. - 335с.

По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения.

Различают вариацию в пространстве и вариацию во времени.

Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени.

Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда.

Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой:

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

Пример нахождения вариационного ряда

Задание. По данной выборке:

  • а) Найти вариационный ряд;
  • б) Построить функцию распределения;

№=42. Элементы выборки:

1 5 1 8 1 3 9 4 7 3 7 8 7 3 2 3 5 3 8 3 5 2 8 3 7 9 5 8 8 1 2 2 5 1 6 1 7 6 7 7 6 2

Решение.

  • а) построение ранжированного вариационного ряда:
    • 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9
  • б) построение дискретного вариационного ряда.

Вычислим число групп в вариационном ряду пользуясь формулой Стерджесса:

Примем число групп равным 7.

Зная число групп, рассчитаем величину интервала:

Для удобства построения таблицы примем число групп равным 8, интервал составит 1.

Рис. 1 Объем продаж магазином товара за определенный промежуток времени


Close