Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За целта ще използваме едно просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

И теоремата за производната на сложна функция, чиято формулировка е следната:

Нека 1) функцията $u=\varphi (x)$ има в някакъв момент $x_0$ производната $u_(x)"=\varphi"(x_0)$, 2) функцията $y=f(u)$ имат в съответната точка $u_0=\varphi (x_0)$ производната $y_(u)"=f"(u)$. Тогава комплексната функция $y=f\left(\varphi (x) \right)$ в споменатата точка също ще има производна, равна на произведението на производните на функциите $f(u)$ и $\varphi ( x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

или, в по-кратка нотация: $y_(x)"=y_(u)"\cdot u_(x)"$.

В примерите в този раздел всички функции имат формата $y=f(x)$ (т.е. разглеждаме само функции на една променлива $x$). Съответно във всички примери производната $y"$ се взема по отношение на променливата $x$. За да се подчертае, че производната се взема по отношение на променливата $x$, $y"_x$ често се пише вместо $y "$.

Примери № 1, № 2 и № 3 очертават подробния процес за намиране на производната на сложни функции. Пример № 4 е предназначен за по-пълно разбиране на производната таблица и има смисъл да се запознаете с нея.

Препоръчително е след изучаване на материала в примери № 1-3 да се премине към самостоятелно решаване на примери № 5, № 6 и № 7. Примери #5, #6 и #7 съдържат кратко решение, така че читателят да може да провери правилността на своя резултат.

Пример №1

Намерете производната на функцията $y=e^(\cos x)$.

Трябва да намерим производната на сложна функция $y"$. Тъй като $y=e^(\cos x)$, тогава $y"=\left(e^(\cos x)\right)"$. За намираме производната $ \left(e^(\cos x)\right)"$ използваме формула № 6 от таблицата с производни. За да използваме формула № 6, трябва да вземем предвид, че в нашия случай $u=\cos x$. Следващото решение се състои в просто заместване на израза $\cos x$ вместо $u$ във формула № 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Сега трябва да намерим стойността на израза $(\cos x)"$. Обръщаме се отново към таблицата с производни, избирайки формула № 10 от нея. Замествайки $u=x$ във формула № 10, имаме : $(\cos x)"=-\ sin x\cdot x"$. Сега нека продължим равенството (1.1), допълвайки го с намерения резултат:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Тъй като $x"=1$, продължаваме равенството (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

И така, от равенството (1.3) имаме: $y"=-\sin x\cdot e^(\cos x)$. Естествено, обясненията и междинните равенства обикновено се пропускат, записвайки намирането на производната на един ред, както в равенството ( 1.3) И така, производната на сложна функция е намерена, остава само да напишем отговора.

Отговор: $y"=-\sin x\cdot e^(\cos x)$.

Пример №2

Намерете производната на функцията $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Трябва да изчислим производната $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Като начало отбелязваме, че константата (т.е. числото 9) може да бъде извадена от знака за производна:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Сега нека се обърнем към израза $\left(\arctg^(12)(4\cdot \ln x) \right)"$. За да улесня избирането на желаната формула от таблицата с производни, ще представя израза в тази форма: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Сега е ясно, че е необходимо да се използва формула № 2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Нека заместим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$ в тази формула:

Допълвайки равенството (2.1) с получения резултат, имаме:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

В тази ситуация често се допуска грешка, когато решаващият на първата стъпка избере формулата $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ вместо формулата $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Въпросът е, че производната на външната функция трябва да е на първо място. За да разберете коя функция ще бъде външна за израза $\arctg^(12)(4\cdot 5^x)$, представете си, че изчислявате стойността на израза $\arctg^(12)(4\cdot 5^ x)$ при някаква стойност $x$. Първо ще изчислите стойността на $5^x$, след това ще умножите резултата по 4, получавайки $4\cdot 5^x$. Сега вземаме аркутангенса от този резултат, получавайки $\arctg(4\cdot 5^x)$. След това повдигаме полученото число на дванадесета степен, получавайки $\arctg^(12)(4\cdot 5^x)$. Последното действие, т.е. повдигането на степен 12 ще бъде външна функция. И именно от това трябва да започнем да намираме производната, което беше направено в равенство (2.2).

Сега трябва да намерим $(\arctg(4\cdot \ln x))"$. Използваме формула № 19 от таблицата с производни, като заместваме $u=4\cdot \ln x$ в нея:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Нека опростим малко получения израз, като вземем предвид $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Равенството (2.2) сега ще стане:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Остава да намерим $(4\cdot \ln x)"$. Нека извадим константата (т.е. 4) от знака за производна: $(4\cdot \ln x)"=4\cdot (\ln x)" $. За да намерим $(\ln x)"$ използваме формула № 8, замествайки $u=x$ в нея: $(\ln x)"=\frac(1)(x)\cdot x "$. Тъй като $x"=1$, тогава $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Замествайки получения резултат във формула (2.3), получаваме:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).$ $

Нека ви напомня, че производната на сложна функция най-често се намира в един ред, както е написано в последното равенство. Следователно, когато се подготвят стандартни изчисления или контролна работа, изобщо не е необходимо да се описва решението толкова подробно.

Отговор: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Пример №3

Намерете $y"$ на функцията $y=\sqrt(\sin^3(5\cdot9^x))$.

Първо, нека леко трансформираме функцията $y$, изразявайки радикала (корен) като степен: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9 ^x) \right)^(\frac(3)(7))$. Сега нека започнем да намираме производната. Тъй като $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, тогава:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Нека използваме формула № 2 от таблицата с производни, като заместим в нея $u=\sin(5\cdot 9^x)$ и $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Нека продължим равенството (3.1), използвайки получения резултат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Сега трябва да намерим $(\sin(5\cdot 9^x))"$. За целта използваме формула № 9 от таблицата с производни, като заместваме $u=5\cdot 9^x$ в нея:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Като допълним равенството (3.2) с получения резултат, имаме:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Остава да намерим $(5\cdot 9^x)"$. Първо, нека вземем константата (числото $5$) извън знака за производна, т.е. $(5\cdot 9^x)"=5\cdot (9 ^x) "$. За да намерите производната $(9^x)"$, приложете формула № 5 от таблицата с производни, като заместите $a=9$ и $u=x$ в нея: $(9^x) )"=9^x\cdot \ ln9\cdot x"$. Тъй като $x"=1$, тогава $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Сега можем да продължим равенството (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можем отново да се върнем от степени към радикали (т.е. корени), записвайки $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ във формата $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^x)))$. Тогава производната ще бъде записана в следната форма:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Отговор: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\ cdot 9^x)))$.

Пример №4

Покажете, че формули № 3 и № 4 от таблицата с производни са частен случай на формула № 2 от тази таблица.

Формула № 2 от таблицата с производни съдържа производната на функцията $u^\alpha$. Замествайки $\alpha=-1$ във формула №2, получаваме:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Тъй като $u^(-1)=\frac(1)(u)$ и $u^(-2)=\frac(1)(u^2)$, тогава равенството (4.1) може да бъде пренаписано както следва: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Това е формула № 3 от таблицата на производните.

Нека се обърнем отново към формула № 2 от таблицата на производните. Нека заместим $\alpha=\frac(1)(2)$ в него:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Тъй като $u^(\frac(1)(2))=\sqrt(u)$ и $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1 )(2)))=\frac(1)(\sqrt(u))$, тогава равенството (4.2) може да бъде пренаписано както следва:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Полученото равенство $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ е формула № 4 от таблицата с производни. Както можете да видите, формули № 3 и № 4 от таблицата с производни се получават от формула № 2 чрез заместване на съответната $\alpha$ стойност.

Комплексни производни. Логаритмична производна.
Производна на степенно-експоненциална функция

Продължаваме да подобряваме нашата техника за диференциране. В този урок ще консолидираме материала, който сме покрили, ще разгледаме по-сложни производни, а също така ще се запознаем с нови техники и трикове за намиране на производна, по-специално с логаритмичната производна.

Тези читатели, които имат ниско ниво на подготовка, трябва да се обърнат към статията Как да намерим производната? Примери за решения, което ще ви позволи да повишите уменията си почти от нулата. След това трябва внимателно да проучите страницата Производна на сложна функция, разберете и разрешите всичкопримерите, които дадох. Този урок логично е третият поред и след като го усвоите, вие уверено ще различавате доста сложни функции. Не е желателно да заемате позицията „Къде другаде? Стига!”, тъй като всички примери и решения са взети от реални тестове и често се срещат в практиката.

Да започнем с повторение. На урока Производна на сложна функцияРазгледахме няколко примера с подробни коментари. В хода на изучаване на диференциално смятане и други клонове на математическия анализ ще трябва да диференцирате много често и не винаги е удобно (и не винаги е необходимо) да описвате примери в големи подробности. Затова ще се упражняваме да намираме производни устно. Най-подходящите „кандидати“ за това са производни на най-простите от сложните функции, например:

Според правилото за диференциране на сложни функции :

При изучаване на други теми от матан в бъдеще най-често не се изисква такъв подробен запис; предполага се, че ученикът знае как да намира такива производни на автопилот. Нека си представим, че в 3 часа през нощта телефонът звънна и приятен глас попита: „Колко е производната на тангенса на две X?“ Това трябва да бъде последвано от почти мигновен и учтив отговор: .

Първият пример ще бъде незабавно предназначен за самостоятелно решение.

Пример 1

Намерете устно следните производни, в едно действие, например: . За да изпълните задачата, трябва само да използвате таблица с производни на елементарни функции(ако още не сте се сетили). Ако имате затруднения, препоръчвам ви да прочетете отново урока Производна на сложна функция.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Отговори в края на урока

Комплексни производни

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Следващите два примера може да изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциалното смятане ще изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, когато се намира производната на сложна функция, на първо място е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням ви за полезна техника: вземаме експерименталната стойност на „x“ например и се опитваме (мислено или в чернова) да заменим тази стойност в „ужасния израз“.

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-външната функция е корен квадратен:

Формула за диференциране на сложна функция се прилагат в обратен ред, от най-външната функция към най-вътрешната. Ние решаваме:

Изглежда, че няма грешки...

(1) Вземете производната на корен квадратен.

(2) Вземаме производната на разликата, използвайки правилото

(3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

(4) Вземете производната на косинуса.

(5) Вземете производната на логаритъма.

(6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а на три функции. Как да намерим производната на произведението на три фактора?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за диференциране на продукта два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? Наистина ли е – това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:

Сега остава правилото да се приложи втори път в скоби:

Можете също така да се изкривите и да поставите нещо извън скоби, но в този случай е по-добре да оставите отговора точно в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение, в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен? Нека намалим израза на числителя до общ знаменател и да се отървем от триетажната част:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране

Пример 8

Намерете производната на функция

Тук можете да отидете по дългия път, като използвате правилото за разграничаване на сложна функция:

Но още първата стъпка веднага ви потапя в униние - трябва да вземете неприятната производна от дробна степен, а след това и от дроб.

Ето защо предикак да вземем производната на „сложен“ логаритъм, първо се опростява с помощта на добре познати училищни свойства:



! Ако имате учебна тетрадка под ръка, копирайте тези формули директно там. Ако нямате тетрадка, препишете ги на лист хартия, тъй като останалите примери от урока ще се въртят около тези формули.

Самото решение може да бъде написано по следния начин:

Нека трансформираме функцията:

Намиране на производната:

Предварителното преобразуване на самата функция значително опрости решението. По този начин, когато подобен логаритъм е предложен за диференциране, винаги е препоръчително да го „разбиете“.

А сега няколко прости примера, които можете да решите сами:

Пример 9

Намерете производната на функция

Пример 10

Намерете производната на функция

Всички трансформации и отговори са в края на урока.

Логаритмична производна

Ако производното на логаритмите е толкова сладка музика, тогава възниква въпросът: възможно ли е в някои случаи логаритъмът да се организира изкуствено? Мога! И дори необходимо.

Пример 11

Намерете производната на функция

Наскоро разгледахме подобни примери. Какво да правя? Можете последователно да приложите правилото за диференциране на частното и след това правилото за диференциране на продукта. Недостатъкът на този метод е, че в крайна сметка получавате огромна триетажна фракция, с която изобщо не искате да се занимавате.

Но на теория и практика има такова прекрасно нещо като логаритмичната производна. Логаритмите могат да бъдат организирани изкуствено, като ги "окачите" от двете страни:

Забележка : защото функция може да приема отрицателни стойности, тогава, най-общо казано, трябва да използвате модули: , които ще изчезнат в резултат на диференциация. Текущият дизайн обаче също е приемлив, като по подразбиране се взема предвид комплексзначения. Но ако в цялата строгост, тогава и в двата случая трябва да се направи уговорка, че.

Сега трябва да „разпаднете“ логаритъма на дясната страна колкото е възможно повече (формули пред очите ви?). Ще опиша този процес много подробно:

Да започнем с диференциацията.
Заключваме и двете части под премията:

Производната на дясната страна е доста проста, няма да я коментирам, защото ако четете този текст, трябва да можете да се справите уверено.

Какво ще кажете за лявата страна?

От лявата страна имаме сложна функция. Предвиждам въпроса: „Защо, има ли една буква „Y“ под логаритъма?“

Факт е, че тази „игра с една буква“ - САМОТО Е ФУНКЦИЯ(ако не е много ясно, вижте статията Производна на имплицитно посочена функция). Следователно логаритъмът е външна функция, а "y" е вътрешна функция. И използваме правилото за диференциране на сложна функция :

От лявата страна, като по магия, имаме производна. След това, съгласно правилото за пропорцията, прехвърляме "y" от знаменателя на лявата страна към горната част на дясната страна:

А сега нека си спомним за каква функция „играч“ говорихме по време на диференциацията? Нека да разгледаме състоянието:

Окончателен отговор:

Пример 12

Намерете производната на функция

Това е пример, който можете да решите сами. Примерен дизайн на пример от този тип е в края на урока.

С помощта на логаритмичната производна беше възможно да се реши всеки от примерите № 4-7, друго нещо е, че функциите там са по-прости и може би използването на логаритмичната производна не е много оправдано.

Производна на степенно-експоненциална функция

Все още не сме обмисляли тази функция. Степенно-експоненциална функция е функция, за която степента и основата зависят от "x". Класически пример, който ще ви бъде даден във всеки учебник или лекция:

Как да намерим производната на степенно-експоненциална функция?

Необходимо е да се използва току-що обсъдената техника - логаритмичната производна. Закачаме логаритми от двете страни:

Като правило от дясната страна степента се изважда от под логаритъма:

В резултат от дясната страна имаме произведението на две функции, които ще бъдат диференцирани по стандартната формула .

Намираме производната; за да направим това, поставяме двете части под черти:

Допълнителните действия са прости:

Накрая:

Ако някое преобразуване не е напълно ясно, моля, прочетете внимателно отново обясненията на Пример № 11.

В практическите задачи степенно-експоненциалната функция винаги ще бъде по-сложна от разглеждания лекционен пример.

Пример 13

Намерете производната на функция

Използваме логаритмичната производна.

От дясната страна имаме константа и произведението на два фактора - “x” и “логаритъм от логаритъм x” (друг логаритъм е вложен под логаритъма). Когато диференцирате, както си спомняме, е по-добре незабавно да преместите константата от производния знак, така че да не ви пречи; и, разбира се, прилагаме познатото правило :


В този урок ще научим как да намираме производна на сложна функция. Урокът е логично продължение на урока Как да намерим производната?, в който разгледахме най-простите производни, а също така се запознахме с правилата за диференциране и някои технически техники за намиране на производни. Така че, ако не сте много добри с производните на функции или някои точки в тази статия не са напълно ясни, тогава първо прочетете горния урок. Моля, задайте сериозно настроение - материалът не е прост, но все пак ще се опитам да го представя просто и ясно.

На практика трябва да се справяте с производната на сложна функция много често, дори бих казал, почти винаги, когато ви дават задачи да намирате производни.

Разглеждаме таблицата на правилото (№ 5) за разграничаване на сложна функция:

Нека да го разберем. Първо, нека обърнем внимание на влизането. Тук имаме две функции - и , като функцията, образно казано, е вложена във функцията . Функция от този тип (когато една функция е вложена в друга) се нарича сложна функция.

Ще извикам функцията външна функция, и функцията – вътрешна (или вложена) функция.

! Тези определения не са теоретични и не трябва да присъстват в окончателния дизайн на задачите. Използвам неофициални изрази „външна функция“, „вътрешна“ функция само за да ви улесня при разбирането на материала.

За да изясните ситуацията, помислете за:

Пример 1

Намерете производната на функция

Под синуса имаме не само буквата „X“, а цял израз, така че намирането на производната веднага от таблицата няма да работи. Също така забелязваме, че тук е невъзможно да се приложат първите четири правила, изглежда има разлика, но факт е, че синусът не може да бъде „разкъсан на парчета“:

В този пример вече интуитивно става ясно от моите обяснения, че функцията е сложна функция, а полиномът е вътрешна функция (вграждане) и външна функция.

Първа стъпкатова, което трябва да направите, когато намирате производната на сложна функция, е да разберете коя функция е вътрешна и коя външна.

В случай на прости примери изглежда ясно, че под синуса е вграден полином. Но какво ще стане, ако всичко не е очевидно? Как точно да определим коя функция е външна и коя вътрешна? За да направите това, предлагам да използвате следната техника, която може да се направи наум или на чернова.

Нека си представим, че трябва да изчислим стойността на израза при на калкулатор (вместо единица може да има произволно число).

Какво ще изчислим първо? Преди всичкоще трябва да извършите следното действие: , следователно полиномът ще бъде вътрешна функция:

Второще трябва да се намери, така че синус – ще бъде външна функция:

След като ние ПРОДАДЕНОС вътрешни и външни функции е време да приложим правилото за разграничаване на сложни функции.

Да започнем да решаваме. От класа Как да намерим производната?ние помним, че дизайнът на решение за всяка производна винаги започва така - затваряме израза в скоби и поставяме черта горе вдясно:

Първонамираме производната на външната функция (синус), погледнете таблицата с производни на елементарни функции и забележете, че . Всички таблични формули са приложими и ако „x“ се замени със сложен израз, в такъв случай:

Моля, имайте предвид, че вътрешната функция не се е променило, не го пипаме.

Е, това е съвсем очевидно

Крайният резултат от прилагането на формулата изглежда така:

Константният фактор обикновено се поставя в началото на израза:

Ако има някакво недоразумение, запишете решението на хартия и прочетете отново обясненията.

Пример 2

Намерете производната на функция

Пример 3

Намерете производната на функция

Както винаги, ние записваме:

Нека разберем къде имаме външна функция и къде имаме вътрешна. За да направим това, ние се опитваме (мислено или в чернова) да изчислим стойността на израза при . Какво трябва да направите първо? Първо, трябва да изчислите на какво е равна основата: следователно полиномът е вътрешната функция:

И едва тогава се извършва степенуването, следователно степенната функция е външна функция:

Според формулата първо трябва да намерите производната на външната функция, в този случай степента. Търсим необходимата формула в таблицата: . Пак повтаряме: всяка таблична формула е валидна не само за „X“, но и за сложен израз. По този начин резултатът от прилагането на правилото за диференциране на сложна функция е следният:

Отново подчертавам, че когато вземем производната на външната функция, нашата вътрешна функция не се променя:

Сега всичко, което остава, е да се намери много проста производна на вътрешната функция и да се промени малко резултата:

Пример 4

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

За да консолидирам вашето разбиране за производната на сложна функция, ще дам пример без коментари, опитайте се да го разберете сами, помислете къде е външната и къде вътрешната функция, защо задачите се решават по този начин?

Пример 5

а) Намерете производната на функцията

б) Намерете производната на функцията

Пример 6

Намерете производната на функция

Тук имаме корен и за да разграничим корена, той трябва да бъде представен като степен. Така първо привеждаме функцията във формата, подходяща за диференциране:

Анализирайки функцията, стигаме до извода, че сумата от трите члена е вътрешна функция, а повдигането на степен е външна функция. Прилагаме правилото за диференциране на сложни функции:

Отново представяме степента като радикал (корен), а за производната на вътрешната функция прилагаме просто правило за диференциране на сумата:

Готов. Можете също да намалите израза до общ знаменател в скоби и да запишете всичко като една дроб. Красиво е, разбира се, но когато получите тромави дълги производни, е по-добре да не правите това (лесно е да се объркате, да направите ненужна грешка и ще бъде неудобно за учителя да проверява).

Пример 7

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

Интересно е да се отбележи, че понякога вместо правилото за диференциране на сложна функция можете да използвате правилото за диференциране на частно , но такова решение ще изглежда като смешно извращение. Ето типичен пример:

Пример 8

Намерете производната на функция

Тук можете да използвате правилото за диференциране на частното , но е много по-изгодно да се намери производната чрез правилото за диференциране на сложна функция:

Подготвяме функцията за диференциране - преместваме минуса от знака за производна и повдигаме косинуса в числителя:

Косинусът е вътрешна функция, степенуването е външна функция.
Нека използваме нашето правило:

Намираме производната на вътрешната функция и нулираме косинуса обратно надолу:

Готов. В разглеждания пример е важно да не се объркате в знаците. Между другото, опитайте се да го решите с помощта на правилото , отговорите трябва да съвпадат.

Пример 9

Намерете производната на функция

Това е пример, който можете да решите сами (отговорете в края на урока).

Досега разглеждахме случаи, в които имахме само едно влагане в сложна функция. В практическите задачи често можете да намерите производни, където, подобно на кукли, една в друга, 3 или дори 4-5 функции са вложени наведнъж.

Пример 10

Намерете производната на функция

Нека разберем прикачените файлове на тази функция. Нека се опитаме да изчислим израза, като използваме експерименталната стойност. Как ще разчитаме на калкулатор?

Първо трябва да намерите , което означава, че арксинусът е най-дълбокото вграждане:

След това този арксинус от едно трябва да бъде повдигнат на квадрат:

И накрая, повдигаме седем на степен:

Тоест в този пример имаме три различни функции и две вграждания, докато най-вътрешната функция е арксинусът, а най-външната функция е експоненциалната функция.

Да започнем да решаваме

Според правилото първо трябва да вземете производната на външната функция. Разглеждаме таблицата с производни и намираме производната на експоненциалната функция: Единствената разлика е, че вместо “x” имаме сложен израз, което не отрича валидността на тази формула. И така, резултатът от прилагането на правилото за диференциране на сложна функция е следният:

Под щриха отново имаме сложна функция! Но вече е по-просто. Лесно е да се провери, че вътрешната функция е арксинусът, а външната функция е степента. Съгласно правилото за диференциране на сложна функция, първо трябва да вземете производната на степента.

Откакто сте дошли тук, вероятно вече сте виждали тази формула в учебника

и направи лице като това:

Приятелю, не се притеснявай! Всъщност всичко е просто скандално. Определено ще разберете всичко. Само една молба - прочетете статията бавно, опитайте се да разберете всяка стъпка. Написах възможно най-просто и ясно, но все пак трябва да разберете идеята. И не забравяйте да решите задачите от статията.

Какво е сложна функция?

Представете си, че се местите в друг апартамент и затова опаковате нещата в големи кашони. Да предположим, че трябва да съберете някои дребни предмети, например училищни материали за писане. Ако просто ги хвърлите в огромна кутия, те ще се изгубят между другите неща. За да избегнете това, първо ги слагате например в торба, която след това слагате в голяма кутия, след което я затваряте. Този „сложен“ процес е представен на диаграмата по-долу:

Изглежда, какво общо има математиката с това? Да, въпреки факта, че една сложна функция се формира по ТОЧНО СЪЩИЯ начин! Само ние „опаковаме“ не тетрадки и химикалки, а \(x\), докато „опаковките“ и „кутиите“ са различни.

Например, нека вземем x и го „опаковаме“ във функция:


В резултат на това получаваме, разбира се, \(\cos⁡x\). Това е нашата „чанта с вещи“. Сега нека го поставим в „кутия“ - опаковайте го, например, в кубична функция.


Какво ще стане накрая? Да, точно така, ще има „чанта с неща в кутия“, тоест „косинус от Х в куб“.

Полученият дизайн е сложна функция. Тя се различава от простата по това НЯКОЛКО „влияния“ (пакети) се прилагат към един X подреди се оказва сякаш „функция от функция“ - „опаковка в опаковката“.

В училищния курс има много малко видове от тези „пакети“, само четири:

Нека сега „опаковаме“ X първо в експоненциална функция с основа 7, а след това в тригонометрична функция. Получаваме:

\(x → 7^x → tg⁡(7^x)\)

Сега нека „опаковаме“ x два пъти в тригонометрични функции, първо в и след това в:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Просто, нали?

Сега напишете сами функциите, където x:
- първо се “опакова” в косинус, а след това в експоненциална функция с основа \(3\);
- първо на пета степен, а след това на допирателната;
- първо към логаритъм по основа \(4\) , след това на степен \(-2\).

Намерете отговорите на тази задача в края на статията.

Можем ли да „опаковаме“ X не два, а три пъти? Няма проблем! И четири, и пет, и двадесет и пет пъти. Ето, например, функция, в която x е „опаковано“ \(4\) пъти:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Но такива формули няма да се намерят в училищната практика (учениците са по-щастливи - техните може да са по-сложни☺).

„Разопаковане“ на сложна функция

Погледнете предишната функция отново. Можете ли да разберете последователността на „опаковане“? В какво X е напъхано първо, в какво след това и така до самия край. Тоест, коя функция е вложена в коя? Вземете лист хартия и напишете какво мислите. Можете да направите това с верига със стрелки, както писахме по-горе или по друг начин.

Сега верният отговор е: първо, x беше „опаковано“ в \(4\)-та степен, след това резултатът беше опакован в синус, той от своя страна беше поставен в логаритъм при основа \(2\) , и накрая цялата тази конструкция беше напъхана в петици.

Тоест, трябва да развиете последователността В ОБРАТЕН РЕД. И ето съвет как да го направите по-лесно: веднага погледнете X - трябва да танцувате от него. Нека да разгледаме няколко примера.

Например, ето следната функция: \(y=tg⁡(\log_2⁡x)\). Гледаме Х - какво се случва първо с него? Взето от него. И тогава? Взема се тангенсът на резултата. Последователността ще бъде същата:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Друг пример: \(y=\cos⁡((x^3))\). Нека анализираме - първо подложихме X на куб и след това взехме косинуса на резултата. Това означава, че последователността ще бъде: \(x → x^3 → \cos⁡((x^3))\). Обърнете внимание, функцията изглежда подобна на първата (където има снимки). Но това е съвсем различна функция: тук в куба е x (т.е. \(\cos⁡((x·x·x)))\), а там в куба е косинусът \(x\) ( тоест \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Тази разлика възниква от различни последователности на "опаковане".

Последният пример (с важна информация в него): \(y=\sin⁡((2x+5))\). Ясно е, че тук първо са извършили аритметични операции с x, след което са взели синус от резултата: \(x → 2x+5 → \sin⁡((2x+5))\). И това е важен момент: въпреки факта, че аритметичните операции не са функции сами по себе си, тук те също действат като начин за „опаковане“. Нека се задълбочим малко в тази тънкост.

Както казах по-горе, в простите функции x се „опакова“ веднъж, а в сложните функции - два или повече. Освен това всяка комбинация от прости функции (т.е. тяхната сума, разлика, умножение или деление) също е проста функция. Например \(x^7\) е проста функция, както и \(ctg x\). Това означава, че всички техни комбинации са прости функции:

\(x^7+ ctg x\) - просто,
\(x^7· cot x\) – просто,
\(\frac(x^7)(ctg x)\) – просто и т.н.

Ако обаче към такава комбинация се приложи още една функция, тя ще стане сложна функция, тъй като ще има два „пакета“. Вижте диаграмата:



Добре, давай сега. Напишете последователността от функции за „обвиване“:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Отговорите отново са в края на статията.

Вътрешни и външни функции

Защо трябва да разбираме влагането на функции? Какво ни дава това? Факт е, че без такъв анализ няма да можем надеждно да намерим производни на обсъдените по-горе функции.

И за да продължим напред, ще ни трябват още две понятия: вътрешни и външни функции. Това е много просто нещо, освен това всъщност вече ги анализирахме по-горе: ако си спомним нашата аналогия в самото начало, тогава вътрешната функция е „пакет“, а външната функция е „кутия“. Тези. това, в което X е „опаковано“ първо, е вътрешна функция, а това, в което е „опакована“ вътрешната функция, вече е външно. Е, ясно е защо - тя е външна, това означава външна.

В този пример: \(y=tg⁡(log_2⁡x)\), функцията \(\log_2⁡x\) е вътрешна и
- външен.

И в това: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) е вътрешно и
- външен.

Завършете последната практика за анализиране на сложни функции и нека най-накрая да преминем към това, за което всички започнахме - ще намерим производни на сложни функции:

Попълнете празните места в таблицата:


Производна на сложна функция

Браво на нас, най-после стигнахме до „шефа” на тази тема - всъщност производната на сложна функция и по-точно до онази ужасна формула от началото на статията.☺

\((f(g(x)"=f"(g(x))\cdot g"(x)\)

Тази формула гласи така:

Производната на сложна функция е равна на произведението на производната на външната функция по отношение на постоянна вътрешна функция и производната на вътрешната функция.

И веднага погледнете диаграмата за разбор „дума по дума“, за да разберете какво е какво:

Надявам се, че термините „дериват“ и „продукт“ не създават затруднения. „Комплексна функция“ - вече сме я подредили. Уловката е в „производното на външна функция по отношение на постоянна вътрешна функция“. Какво е?

Отговор: Това е обичайната производна на външна функция, при която се променя само външната функция, а вътрешната остава същата. Все още не е ясно? Добре, нека използваме пример.

Нека имаме функция \(y=\sin⁡(x^3)\). Ясно е, че вътрешната функция тук е \(x^3\), а външната
. Нека сега намерим производната на екстериора по отношение на постоянния интериор.


Близо