План-конспект урока по теме « »

Дата :

Тема: « Научно-практическая конференция «Зачем нужны в науке измерения? »

Цели:

Образовательная : формирование умений обобщать и систематизировать учебный материал по главе «Физические методы познания природы» ;

Развивающая : развитие умений объяснять тепловое расширение тел;

Воспитательная : прививать культуру умственного труда, аккуратность, учить видеть практическую пользу знаний, продолжить формирование коммуникативных умений, воспитывать внимательность, наблюдательность.

Тип урока: обобщение и систематизация знаний

Оборудование и источники информации:

Исаченкова, Л. А. Физика: учеб. для 7 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2017 .

Структура урока:

    Организационный момент (2 мин)

    Актуализация опорных знаний (5 мин)

    Закрепление знаний(33 мин)

    Итоги урока (5 мин)

Содержание урока

    Организационный момент

Сегодня мы проводим урок в форме научно-практической конференции. Как вы думаете, чем будет отличаться сегодняшний урок от традиционных?

Результатом работы нашей научно-практической конференции будет обсуждение следующих вопросов:

во-первых, старинная система измерения;

во-вторых, разобраться какие существуют измерительные приборы,

в-третьих, история возникновения термометра,

в-четвертых, показать роль измерений в науке и жизни человека.

    Актуализация опорных знаний

Ответьте на вопросы (фронтальный опрос):

    Что называют тепловым расширением тел?

    Приведите примеры теплового расширения(сжатия) твердых тел, жидкостей, газов.

    Чем отличается тепловое расширение газов от теплового расширения твердых тел и жидкостей?

    Закрепление знаний

(закрепление знаний проведем в форме круглого стола)

Уважаемые участники конференции, и наши гости! Мы рады приветствовать вас в этом классе! Через несколько минут вы сможете прослушать доклады об «роли измерений в жизни человека и науки».

Предлагаю следующий план работы:

    Выступления докладчиков.

    Мнения оппонентов.

    Подведение итогов конференции.

Если возражений нет, то мы начинаем.

Выступление учащихся

Физкультминутка

А теперь предоставляется слово оппонентам.

У каждого оппонента есть оценочный лист (приложение 1)

    Итоги урока

(Заключительное слово или подведение итогов проведенной конференции)

Мы не будем останавливаться на достигнутом, и продолжим эту работу. Ваше мнение я прошу выразить в выданных вам картах оценки учащихся, чтобы учесть его при подготовке следующей конференции.

Жюри в течении конференции и по ее окончании заполняет карту оценки выступающих (приложение 2). Оценка производиться по 10-ти балльной системе. Жюри подводит итог, объявляет результаты конференции.

Рефлексия

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся.

Приложение 1

Оценочный лист

Название проекта

ФИО ученика

Критерии оценки

Итоговая оценка

Актуальность темы

Источники информации

Качество разработки идеи

Оригинальность и творческий подход

Оформление работы

Защита проекта

Приложение 2

Карта оценки выступающих

Ф.И. учащегося

лаконичность изложения основной мысли (продолжительность выступления не более 5 минут), логичность и доказательность рассуждений, их связанность с темой работы

грамотное использование специальной терминологии

умение выделить и обосновать цель и задачи работы, а также главное и второстепенное; демонстрировать полученные результаты анализа и обобщений, самостоятельность

уровень сложности работы, объем знаний и умений по базовой дисциплине

полнота и четкость ответов на вопросы по затронутым в работе и основополагающим принципам физики

Итого

Когда я пишу тексты за своим столом, я могу протянуть руку вверх, чтобы включить лампу, или вниз, чтобы открыть ящик стола и достать ручку. Протянув руку вперёд, я касаюсь небольшой и странной на вид статуэтки, которую мне на счастье подарила сестра. Потянувшись назад, я могу похлопать чёрную кошку, крадущуюся у меня за спиной. Справа лежат заметки, сделанные во время исследований для статьи, слева - куча вещей, которые необходимо сделать (счета и корреспонденция). Вверх, вниз, вперёд, назад, вправо, влево - я управляю самим собой в моём личном космосе трёхмерного пространства. Невидимые оси этого мира налагает на меня прямоугольная структура моего кабинета, определяемая, как и большая часть западной архитектуры, тремя составленными вместе прямыми углами.

Наши архитектура, образование и словари сообщают нам о трёхмерности пространства. Оксфордский словарь английского языка так пространство: «непрерывная область или простор, свободная, доступная или не занятое ничем. Измерения высоты, глубины и ширины, в рамках которых существуют и движутся все вещи». [словарь Ожегова похожим образом: «Протяженность, место, не ограниченное видимыми пределами. Промежуток между чем-н., место, где что-н. вмещается.» / прим. перев. ]. В XVIII веке утверждал, что трёхмерное евклидово пространство является априорной необходимостью, и нам, пресыщенным изображениями, созданными компьютером, и видеоиграми, постоянно напоминают об этом представлении в виде вроде бы аксиоматичной прямоугольной системы координат. В точки зрения XXI века это кажется уже почти самоочевидным.

И всё же идея о жизни в пространстве, описываемом какой-то математической структурой - это радикальная инновация западной культуры, сделавшая необходимостью опровержение старинных верований по поводу природы реальности. Хотя зарождение современной науки часто описывают как переход к механизированному описанию природы, вероятно, более важным его аспектом - и однозначно более длительным - был переход к понятию о пространстве как о геометрической конструкции.

В прошлом веке задача описания геометрии пространства стала основным проектом теоретической физики, в котором эксперты, начиная с Альберта Эйнштейна, пытались описать все фундаментальные взаимодействия природы в виде побочных продуктов формы самого пространства. Хотя на локальном уровне нас приучили думать о пространстве как о трёхмерном, общая теория относительности описывает четырёхмерную Вселенную, а теория струн говорит о десяти измерениях - или об 11, если взять за основу её расширенный вариант, М-теорию. Существуют варианты этой теории с 26-ю измерениями, а недавно математики с энтузиазмом приняли , описывающую 24 измерения. Но что это за «измерения»? И что означает наличие десяти измерений в пространстве?

Чтобы прийти к современному математическому пониманию пространства, сначала необходимо подумать о нём как о некоей арене, которую может занимать материя. По меньшей мере, пространство необходимо представить себе, как нечто протяжённое. Такая идея, пусть и очевидная для нас, показалась бы еретической , чьи концепции представления физического мира преобладали в западном мышлении в поздней античности и в средневековье.

Строго говоря, аристотелева физика включала в себя не теорию пространства, а лишь концепцию места. Рассмотрим чашку чаю, стоящую на столе. Для Аристотеля чашка была окружённой воздухом, самим по себе представлявшим некую субстанцию. В его картине мира не было такой вещи, как пустое пространство - были только границы между веществами - чашкой и воздухом. Или столом. Для Аристотеля пространство, если вы хотите его так называть, было лишь бесконечно тонкой гранью между чашкой и тем, что её окружает. Баз протяжённости пространство не было чем-то таким, внутри чего может быть что-то другое.

С математической точки зрения, «измерение» - это всего лишь ещё одна координатная ось, ещё одна степень свободы, становящаяся символической концепцией, не обязательно связанной с материальным миром. В 1860-х пионер в области логики Огастес де Морган, чьи работы повлияли на Льюиса Кэрролла, подытожил эту становящуюся всё более абстрактной область, отметив, что математика - это чисто «наука о символах», и как таковая не обязана связываться с чем-либо, кроме самой себя. Математика, в каком-то смысле, это логика, свободно перемещающаяся на полях воображения.

В отличие от математиков, свободно играющих на полях идей, физики привязаны к природе, и, по крайней мере, в принципе, зависят от материальных вещей. Но все эти идеи приводят нас к освобождающей возможности - ведь если математика допускает количество измерений больше трёх, и мы считаем, что математика оказывается полезной для описания мира, откуда нам знать, что физическое пространство ограничено тремя измерениями? Хотя Галилей, Ньютон и Кант принимали длину, ширину и высоту как аксиомы, не может ли в нашем мире существовать больше измерений?

Опять-таки, идея Вселенной с количеством измерений больше трёх проникла в сознание общества через художественную среду, на этот раз - через литературные рассуждения, наиболее известной из которых служит работа математика “ ” (1884). Это очаровательная социальная сатира рассказывает историю скромного Квадрата, живущего на плоскости, к которому однажды в гости приходит трёхмерное существо лорд Сфера, выводящее его в великолепный мир трёхмерных тел. В этом рае объёмов Квадрат наблюдает за его трёхмерной версией, Кубом, и начинает мечтать о переходе в четвёртое, пятое и шестое измерение. Почему не гиперкуб? Или не гипер-гиперкуб, думает он?

К сожалению, в Флатландии Квадрата причисляют к лунатикам и запирают в сумасшедший дом. Одной из моралей истории, в отличие от более слащавых её экранизаций и адаптаций, является опасность, таящаяся в игнорировании социальных устоев. Квадрат, рассказывая о других измерениях пространства, рассказывает и о других изменениях бытия - он становится математическим чудаком.

В конце XIX и начале XX веков масса авторов (Герберт Уэллс, математик и автор НФ-романов , придумавший слово «тессеракт» для обозначения четырёхмерного куба), художников (Сальвадор Дали) и мистиков ( [русский оккультист, философ, теософ, таролог, журналист и писатель, математик по образованию / прим. перев. ] изучала идеи, связанные с четвёртым измерением и тем, чем может стать для человека встреча с ним.

Затем в 1905 году неизвестный тогда физик Альберт Эйнштейн опубликовал работу, описывающую реальный мир как четырёхмерный. В его «специальной теории относительности» время добавлялось к трём классическим измерениям пространства. В математическом формализме относительности все четыре измерения связаны вместе - так в наш лексикон вошёл термин «пространство-время». Такое объединение было не произвольным. Эйнштейн обнаружил, что используя этот подход, можно создать мощный математический аппарат, превосходящий физику Ньютона и позволяющий ему предсказывать поведение электрически заряженных частиц. Электромагнетизм можно полностью и точно описать только в четырёхмерной модели мира.

Относительность стала чем-то гораздо большим, чем просто ещё одной литературной игрой, особенно когда Эйнштейн расширил её от «специальной» до «общей». Многомерное пространство приобрело глубинное физическое значение.

В картине мира Ньютона материя движется через пространство во времени под влиянием естественных сил, в частности, гравитации. Пространство, время, материя и силы - различные категории реальности. С СТО Эйнштейн демонстрировал объединение пространства и времени, уменьшая количество фундаментальных физических категорий с четырёх до трёх: пространства-времени, материи и сил. ОТО делает следующий шаг, вплетая гравитацию в структуру самого пространства-времени. С четырёхмерной точки зрения, гравитация - всего лишь артефакт формы пространства.

Чтобы осознать эту примечательную ситуацию, представим её двумерный аналог. Представьте себе батут, нарисованный на поверхности декартовой плоскости. Теперь разместим на решётке шар для боулинга. Вокруг него поверхность натянется и исказится так, что некоторые точки отдалятся друг от друга сильнее. Мы исказили внутреннюю меру расстояния в пространстве, сделали её неровной. ОТО говорит, что именно такому искажению тяжёлые объекты, такие, как Солнце, подвергают пространство-время, и отклонение от декартового совершенства пространства приводит к появлению явления, которое мы ощущаем, как гравитацию.

В физике Ньютона гравитация появляется из ниоткуда, а у Эйнштейна она естественным образом возникает из внутренней геометрии четырёхмерного многообразия. Там, где многообразие наибольшим образом растягивается, или отходит от декартовой регулярности, гравитация ощущается сильнее. Это иногда называют «физикой резиновой плёнки». В ней огромные космические силы, удерживающие планеты на орбитах вокруг звёзд, а звёзды на орбитах в рамках галактик, являются ничем иным, как побочным эффектом искажённого пространства. Гравитация - это буквально геометрия в действии.

Если переход в четырёхмерное пространство помогает объяснить гравитацию, то будет ли какое-либо научное преимущество у пятимерного пространства? «Почему бы не попробовать?» - спросил в 1919 году молодой польский математик , размышляя над тем, что если Эйнштейн включил гравитацию в пространство-время, то, возможно, дополнительное измерение может схожим образом обращаться с электромагнетизмом, как с артефактом геометрии пространства-времени. Поэтому Калуца добавил дополнительное измерение к уравнениям Эйнштейна, и, к своему восторгу, обнаружил, что в пяти измерениях обе эти силы прекрасно оказываются артефактами геометрической модели.

Математика волшебным образом сходится, но в данном случае проблемой стало то, что дополнительное измерение никак не коррелировало с каким-либо определённым физическим свойством. В ОТО четвёртым измерением было время; в теории Калуцы оно не было чем-либо, что можно увидеть, почувствовать или на что можно указать: оно просто было в математике. Даже Эйнштейн разочаровался в такой эфемерной инновации. Что это? - спрашивал он; где оно?

Существует множество версий уравнений теории струн, описывающих десятимерное пространство, но в 1990-х математик из Института передовых исследований в Принстоне (старого логова Эйнштейна) показал, что всё можно немного упростить, если перейти к 11-мерной перспективе. Он назвал свою новую теорию «М-теория», и загадочно отказался объяснить, что обозначает буква «М». Обычно говорят, что она обозначает «мембрану», но кроме этого поступали и такие предложения, как «матрица», «мастер», «мистическая» и «монструозная».

Пока что у нас нет никаких свидетельств этих дополнительных измерений - мы всё ещё находимся в состоянии плавающих физиков, мечтающих о недоступных миниатюрных ландшафтах - но теория струн оказала мощное влияние на саму математику. Недавно разработки версии этой теории, имеющей 24 измерения, показали наличие неожиданной взаимосвязи между несколькими основными ответвлениями математики, что означает, что даже если теория струн не пригодится в физике, она станет полезным источником . В математике 24-мерное пространство особенное - там происходят волшебные вещи, к примеру, возможно упаковать сферы особенно элегантным образом - хотя маловероятно, что в реальном мире 24 измерения. Касательно мира, в котором мы живём и который мы любим, большинство специалистов по теории струн считают, что 10 или 11 измерений будет достаточно.

Внимания достойно ещё одно событие теории струн. В 1999 году (первая женщина, получившая пост в Гарварде в области теоретической физики) и (американский специалист по теоретической физике частиц индийского происхождения) , что дополнительное измерение может существовать на космологической шкале, на масштабах, описываемых теорией относительности. Согласно их теории «бран» (брана - это сокращение от мембраны) - то, что мы называем нашей Вселенной, может находиться в гораздо более крупном пятимерном пространстве, в чём-то вроде сверхвселенной. В этом сверхпространстве наша Вселенная может быть одной из целого ряда существующих вместе вселенных, каждая из которых представляет собой четырёхмерный пузырь на более широкой арене пятимерного пространства.

Сложно сказать, сможем ли мы когда-нибудь подтвердить теорию Рэндалл и Сандрума. Однако между этой идеей и зарёй современной астрономии уже проводят некоторые аналогии. 500 лет назад европейцы считали невозможным представить себе иные физические «миры» кроме нашего собственного, однако сейчас нам известно, что Вселенная заполнена миллиардами других планет, движущихся по орбитам вокруг миллиардов других звёзд. Кто знает, может когда-нибудь наши потомки смогут найти доказательства существования миллиардов других вселенных, у каждой из которых есть свои уникальные уравнения для пространства-времени.

Проект понимания геометрической структуры пространства - одно из характерных достижений науки, но может получиться так, что физики достигли конца этого пути. Оказывается, что Аристотель в каком-то смысле был прав - у идеи протяжённого пространства и правда есть логические проблемы. Несмотря на все необычайные успехи теории относительности, мы знаем, что её описание пространства не может быть итоговым, поскольку оно отказывает на квантовом уровне. За последние полвека физики безуспешно пытались объединить их понимание пространства на космологическом масштабе с тем, что они наблюдают на квантовом масштабе, и всё больше кажется, что такой синтез может потребовать радикально новой физики.

Эйнштейн после разработки ОТО провёл большую часть жизни, пытаясь «выразить все законы природы из динамики пространства и времени, низведя физику к чистой геометрии», как сказал недавно Робберт Дийкграаф , директор Института передовых исследований в Принстоне. «Для Эйнштейна пространство-время было естественным фундаментом бесконечной иерархии научных объектов». Как и у Ньютона, картина мира Эйнштейна ставит пространство во главу существование, делает его ареной, на которой всё происходит. Но на крохотных масштабах, где преобладают квантовые свойства, законы физики показывают, что такого пространства, к которому мы привыкли, может и не быть.

Некоторые физики-теоретики начинают высказывать мысль о том, что пространство может быть некоим возникающим явлением, следующим из чего-то более фундаментального, так, как температура возникает на макроскопическом масштабе в результате движения молекул. Как говорит Дийкграаф: «Текущая точка зрения считает пространство-время не точкой отсчёта, а итоговой финишной чертой, естественной структурой, появляющейся из сложности квантовой информации».

Ведущий сторонник новых способов представления пространства - космолог из Калтеха, недавно, что классическое пространство - это не «фундаментальная часть архитектуры реальности», и доказывающей, что мы неверно присваиваем такой особый статус его четырём, или 10, или 11 измерениям. Если Дийкграаф приводит аналогию с температурой, то Кэрролл предлагает нам рассмотреть «влажность», явление, проявляющееся оттого, что множество молекул воды собираются вместе. Отдельные молекулы воды не являются влажными, и свойство влажности появляется только тогда, когда вы соберёте множество их в одном месте. Точно так же, говорит он, пространство появляется из более базовых вещей на квантовом уровне.

Кэрролл пишет, что с квантовой точки зрения Вселенная «появляется в математическом мире с количеством измерений порядка 10 10 100 » - это десятка с гуголом нулей, или 10 000 и ещё триллион триллионов триллионов триллионов триллионов триллионов триллионов триллионов нулей. Сложно представить такое невозможно огромное количество, по сравнению с которым количество частиц во Вселенной оказывается совершенно незначительным. И всё же, каждое из них - отдельное измерение в математическом пространстве, описываемое квантовыми уравнениями; каждое - это новая «степень свободы», имеющаяся в наличии у Вселенной.

Даже Декарт был бы поражён тем, куда нас завели его рассуждения, и какая удивительная сложность скрывалась в таком простом слове, как «измерение».

Хаматова Диляра

В детстве мы часто слышим пословицы, в которых используются старинные слова. Например: «От горшка два вершка, а уже указчик», «Семь пядей во лбу», «Каждый купец на свой аршин меряет», «Косая сажень в плечах», «Коломенская верста».

На уроках литературы мы изучаем классические произведения, в которых встречаются старинные слова, а на уроках математики - различные единицы измерения.

Наверное, каждого найдутся дома безмен, линейка и сантиметровая лента. Они нужны для того, чтобы измерять вес и длины. Есть дома и другие измерительные приборы. Это часы, по которым узнают время, термометр, на который каждый бросит взгляд, выходя на улицу, счетчик электроэнергии, по которому узнают, сколько надо за нее заплатить в конце месяца и многое многое другое.

Скачать:

Предварительный просмотр:

Введение

Зачем нужны человеку измерения?

В детстве мы часто слышим пословицы, в которых используются старинные слова. Например: «От горшка два вершка, а уже указчик», «Семь пядей во лбу», «Каждый купец на свой аршин меряет», «Косая сажень в плечах», «Коломенская верста».

На уроках литературы мы изучаем классические произведения, в которых встречаются старинные слова, а на уроках математики - различные единицы измерения.

Наверное, каждого найдутся дома безмен, линейка и сантиметровая лента. Они нужны для того, чтобы измерять вес и длины. Есть дома и другие измерительные приборы. Это часы, по которым узнают время, термометр, на который каждый бросит взгляд, выходя на улицу, счетчик электроэнергии, по которому узнают, сколько надо за нее заплатить в конце месяца и многое многое другое.

Первые единицы для измерения величин были не слишком точные. Например: расстояния измерялись шагами. Конечно, у разных людей величина шага различна, но брали некоторую среднюю величину. Для измерения больших расстояний шаг был слишком мелкой единицей.

Шаг – расстояние между пятками или носками шагающего человека. Средняя длина шага 71 см.

Слово « градус» - латинское, означает «шаг», «ступень». Измерение углов в градусах появилось более 3 тыс. лет назад в Вавилоне. В расчетах там использовалась шестидесятеричная система счисления.

Старинная русская система мер сложилась примерно в 10 – 11 веках. Ее основные единицы: верста, сажень, локоть и пядь.

Самая мелкая из них – это пядь. Слово это означает кисть руки (вспомните современное слово «запястье»). Определялась пядь как расстояние между концами вытянутых большого и указательного пальцев, ее значение примерно равно 18- 19 см.

Локоть – более крупная единица, как и в большинстве государств, это была единица, равная расстоянию от локтевого сгиба до конца вытянутого среднего пальца руки. Древнерусский локоть равнялся примерно 46 – 47 см. это была основная единица в торговле холстом, полотном и другими тканями.

В XVIII веке меры уточнялись. Петр I указом установил равенство трехаршинной сажени семи английским футам. Прежняя русская система мер длины, дополненная новыми мерами, получила окончательный вид:

Миля = 7 верстам (= 7, 47 км);

Верста = 500 саженям (=1,07 км);

Сажень = 3 аршинам= 7 футам (2,13 м) ;

Аршин = 16 вершкам = 28 дюймам (71,12 см);

Фут = 12 дюймам (30,48 см);

Дюйм =10 линиям (2,54 см);

Линия = 10 точкам (2, 54см).

Очень часто, читая литературные произведения, мы встречаем старинные меры измерения величин и не всегда представляем, что они означают. Например, это всем известные сказки: Дюймовочка, сказка о царе Салтане, Конек-Горбунок, Алиса в зазеркалье, спящая красавица, Маленький Мук, и в стихотворениях А.С.Пушкина, К.И.Чуковского и многих других произведениях.

« Да еще рожу конька

Ростом только 3 вершка,

На спине с двумя горбам

Да аршинными ушами». (Ершов)

«А добрая фея, которая спасла его дочь

от смерти, пожелав ей столетнего сна,

была в то время далеко,

За 12 тысяч миль от замка. Но она сразу же узнала об

этом несчастье от маленького карлика-скорохода, у которого были семимильные сапоги.»

«Что вам надо? – шоколада.

Для кого? – для сына моего.

А много ли прислать?

– да пудов этак 5 или 6:

Больше ему не съесть.

Он у меня маленький!»

Между тем, как он далеко

Бьется долго и жестоко,
Наступает срок родин;

Сына бог им дал в аршин…

Старинные меры и задачи.

«Арифметика» Л.Ф.Магницкий

Задача №1.

В жаркий день 6 косцов выпили кадь* кваса за 8 часов. Нужно узнать, сколько косцов за 3 часа выпьют такую же кадь кваса.

______________________________________

* Кадь – ёмкость цилиндрической формы, сделанная из деревянных клёпок (дощечек) и обтянутая металлическими или деревянными обручами

Решение:

1) Сколько косцов выпьют кадь за один час?

6х8 =48 (косцов)

2) Сколько косцов выпьют кадь за три часа?

48:3 =16 (косцов)

Ответ: 16 косцов выпьют кадь кваса за 3 часа.

Выводы

Я познакомился с текстами старинных математических задач из «Арифметики» Магницкого

Также узнал старые меры длины (пядь, локоть, верста, сажень, аршин, ; веса (пуд, фунт), объема (четверть, кадьи их соответствие современным мерам. Я увидел, что в старинном учебнике большое внимание уделялось занимательным задачам, которым Л.Ф.Магницкий посвятил целый раздел под названием «О утешных неких действах чрез арифметику употребляемых».

Рассмотрел литературные произведения, в котором встречаются старинные единицы измерения, и убедился, что их очень много.

Наука начинается с тех пор,
как начинают измерять…
Д. И. Менделеев

Вдумайтесь в слова известного ученого. Из них ясна роль измерений в любой науке, а особенно в физике. Но, кроме того, измерения важны в практической жизни. Можете ли вы представить свою жизнь без измерений времени, массы, длины, скорости движения автомобиля, расхода электроэнергии и т. д.?

Как измерить физическую величину? Для этой цели служат измерительные приборы. Некоторые из них вам уже известны. Это разного вида линейки, часы, термометры, весы, транспортир (рис. 20) и др.

Рис. 20

Измерительные приборы бывают цифровые и шкальные . В цифровых приборах результат измерений определяется цифрами. Это электронные часы (рис. 21), термометр (рис. 22), счетчик электроэнергии (рис. 23) и др.

Рис. 21

Рис. 22

Рис. 23

Линейка, стрелочные часы, термометр бытовой, весы, транспортир (см. рис. 20) - это шкальные приборы. Они имеют шкалу. По ней определяется результат измерения. Вся шкала расчерчена штрихами на деления (рис. 24). Одно деление - это не один штрих (как иногда ошибочно считают учащиеся). Это промежуток между двумя ближайшими штрихами. На рисунке 25 между числами 10 и 20 - два деления, а штриха - 3. Приборы, которые мы будем использовать в лабораторных работах, в основном шкальные.

Рис. 24

Рис. 25

Измерить физическую величину - значит сравнить ее с однородной величиной, принятой за единицу .

Например, чтобы измерить длину отрезка прямой между точками А и В, надо приложить линейку и по шкале (рис. 26) определить, сколько миллиметров укладывается между точками А и В. Однородной величиной, с которой проводилось сравнение длины отрезка АВ, была длина, равная 1 мм.

Рис. 26

Если физическая величина измеряется непосредственно путем снятия данных со шкалы прибора, то такое измерение называют прямым .

Например, приложив линейку к бруску в разных местах, мы определим его длину а (рис. 27, а), ширину b и высоту с. Значение длины, ширины, высоты мы определили непосредственно, сняв отсчет со шкалы линейки. Из рисунка 27, б следует: а = 28 мм. Это прямое измерение.

Рис. 27

А как определить объем бруска?

Надо провести прямые измерения его длины а, ширины b и высоты с, а затем по формуле

V = a . b . c

вычислить объем бруска.

В этом случае мы говорим, что объем бруска определили по формуле, т. е. косвенно, и измерение объема называется косвенным измерением.

Рис. 28

Подумайте и ответьте

  1. На рисунке 28 представлено несколько измерительных приборов.
    1. Как называются эти измерительные приборы?
    2. Какие из них цифровые?
    3. Какую физическую величину измеряет каждый прибор?
    4. Что представляет однородная величина на шкале каждого прибора, представленного на рисунке 28, с которой сравнивают измеряемую величину?
  2. Разрешите спор.

    Таня и Петя решают задачу: «Определите линейкой толщину одного листа книги, содержащей 300 страниц. Толщина всех листов равна 3 см». Петя утверждает, что это можно сделать прямым измерением линейкой толщины листа. Таня же считает, что определение толщины листа - это косвенное измерение.

    А как считаете вы? Обоснуйте свой ответ.

Интересно знать!

Изучая строение человеческого тела и работу его органов, ученые также проводят множество измерений. Оказывается, что человек, масса которого примерно 70 кг, имеет около 6 л крови. Сердце человека в спокойном состоянии сокращается 60-80 раз в минуту. За одно сокращение оно выбрасывает в среднем 60 см 3 крови, в минуту - около 4 л, в сутки - около 6-7 т, в год - более 2000 т. Так что наше сердце - большой труженик!

Кровь человека 360 раз в течение суток проходит через почки, очищаясь там от вредных веществ. Общая протяженность почечных кровеносных сосудов 18 км. Ведя здоровый образ жизни, мы помогаем нашему организму работать без сбоев!

Домашнее задание

Рис. 29

  1. Перечислите в тетради измерительные приборы, которые есть в вашей квартире (доме). Разнесите их по группам:

    1) цифровые; 2) шкальные.

  2. Проверьте справедливость правила Леонардо да Винчи (рис. 29) - гениального итальянского художника, математика, астронома, инженера. Для этого:
    1. измерьте свой рост: попросите кого-нибудь с помощью треугольника (рис. 30) поставить на дверном косяке небольшую черточку карандашом; измерьте расстояние от пола до отмеченной черточки;
    2. измерьте расстояние по горизонтальной прямой между концами пальцев рук (рис. 31);
    3. сравните полученное в пункте б) значение со своим ростом; у большинства людей эти значения равны, что впервые было подмечено Леонардо да Винчи.

Рис. 30

Рис. 31


Ознакомить с устройством и принципом действия барометра-анероида и научить пользоваться им.

Способствовать развитию умения связывать явления природы с физическими законами.

Продолжить формирование представлений об атмосферном давлении и связи атмосферного давления с высотой подъема над уровнем моря.

Продолжить воспитывать внимательное доброжелательное отношение к участникам учебного процесса, личную ответственность за выполнение коллективной работы, понимание необходимости заботиться о чистоте атмосферного воздуха и соблюдать правила охраны природы, приобретение житейских навыков.

Представьте себе заполненный воздухом герметичный цилиндр, с установленным сверху поршнем. Если начать давить на поршень, то объем воздуха в цилиндре начнет уменьшаться, молекулы воздуха станут сталкиваться друг с другом и с поршнем все интенсивнее, и давление сжатого воздуха на поршень возрастет.

Если поршень теперь резко отпустить, то сжатый воздух резко вытолкнет его вверх. Это произойдет потому, что при неизменной площади поршня увеличится сила, действующая на поршень со стороны сжатого воздуха. Площадь поршня осталась неизменной, а сила со стороны молекул газа увеличилась, соответственно увеличилось и давление.

Или другой пример. Стоит человек на земле, стоит обеими стопами. В таком положении человеку комфортно, он не испытывает неудобств. Но что случится, если этот человек решит постоять на одной ноге? Он согнет одну из ног в колене, и теперь будет опираться на землю только одной стопой. В таком положении человек ощутит определенный дискомфорт, ведь давление на стопу увеличилось, причем примерно в 2 раза. Почему? Потому что площадь, через которую теперь сила тяжести придавливает человека к земле, уменьшилась в 2 раза. Вот пример того, что такое давление, и как легко его можно обнаружить в обычной жизни.


Давление в физике

С точки зрения физики, давлением называют физическую величину, численно равную силе, действующей перпендикулярно поверхности на единицу площади данной поверхности. Поэтому, чтобы определить давление в некоторой точке поверхности, нормальную составляющую силы, приложенной к поверхности, делят на площадь малого элемента поверхности, на который данная сила действует. А для того чтобы определить среднее давление по всей площади, нормальную составляющую действующей на поверхность силы нужно разделить на полную площадь данной поверхности.

Паскаль (Па)

Измеряется давление в системе СИ в паскалях (Па). Эта единица измерения давления получила свое название в честь французского математика, физика и литератора Блеза Паскаля, автора основного закона гидростатики - Закона Паскаля, гласящего, что давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях. Впервые единица давления «паскаль» была введена в обращение во Франции в 1961 году, согласно декрету о единицах, спустя три столетия после смерти ученого.


Один паскаль равен давлению, которое вызывает сила в один ньютон, равномерно распределенная, и направленная перпендикулярно к поверхности площадью в один квадратный метр.

В паскалях измеряют не только механическое давление (механическое напряжение), но и модуль упругости, модуль Юнга, объемный модуль упругости, предел текучести, предел пропорциональности, сопротивление разрыву, сопротивление срезу, звуковое давление и осмотическое давление. Традиционно именно в паскалях выражаются важнейшие механические характеристики материалов в сопромате.

Атмосфера техническая (ат), физическая (атм), килограмм-сила на квадратный сантиметр (кгс/см2)

Кроме паскаля для измерения давления применяют и другие (внесистемные) единицы. Одной из таких единиц является «атмосфера» (ат). Давление в одну атмосферу приблизительно равно атмосферному давлению на поверхности Земли на уровне Мирового океана. На сегодняшний день под «атмосферой» понимают техническую атмосферу (ат).

Техническая атмосфера (ат) - это давление, производимое одной килограмм-силой (кгс), распределенной равномерно по площади в один квадратный сантиметр. А одна килограмм-сила, в свою очередь, равна силе тяжести, действующей на тело массой в один килограмм в условиях ускорения свободного падения, равного 9,80665 м/с2. Одна килограмм-сила равна таким образом 9,80665 ньютон, а 1 атмосфера оказывается равной точно 98066,5 Па. 1 ат = 98066,5 Па.

В атмосферах измеряют, например, давление в автомобильных шинах, например рекомендованное давление в шинах пассажирского автобуса ГАЗ-2217 равно 3 атмосферам.


Есть еще «физическая атмосфера» (атм), определяемая как давление ртутного столба, высотой 760 мм на его основание при том, что плотность ртути равна 13595,04 кг/м3, при температуре 0°C и в условиях ускорения свободного падения равного 9,80665 м/с2. Так выходит, что 1 атм = 1,033233 ат = 101 325 Па.

Что касается килограмм-силы на квадратный сантиметр (кгс/см2), то эта внесистемная единица давления с хорошей точностью равна нормальному атмосферному давлению, что бывает иногда удобно для оценок различных воздействий.

Бар (бар), бария

Внесистемная единица «бар» равна приблизительно одной атмосфере, но является более точной - ровно 100000 Па. В системе СГС 1 бар равен 1000000 дин/см2. Раньше название «бар» носила единица, называемая сейчас «бария», и равная 0,1 Па или в системе СГС 1 бария = 1 дин/см2. Слово «бар», «бария» и «барометр» происходят от одного и того же греческого слова «тяжесть».

Часто для измерения атмосферного давления в метеорологии используют единицу мбар (миллибар), равную 0,001 бар. А для измерения давления на планетах где атмосфера очень разряженная - мкбар (микробар), равный 0,000001 бар. На технических манометрах чаще всего шкала имеет градуировку именно в барах.

Миллиметр ртутного столба (мм рт. ст.), миллиметр водяного столба (мм вод. ст.)

Внесистемная единица измерения «миллиметр ртутного столба» равна 101325/760 = 133,3223684 Па. Обозначается «мм рт.ст.», но иногда ее обозначают «торр» - в честь итальянского физика, ученика Галилея, Эванджелисты Торричелли, автора концепции атмосферного давления.

Образовалась единица в связи с удобным способом измерения атмосферного давления барометром, у которого ртутный столб пребывает в равновесии под действием атмосферного давления. Ртуть обладает высокой плотностью около 13600 кг/м3 и отличается низким давлением насыщенного пара в условиях комнатной температуры, поэтому для барометров в свое время и была выбрана именно ртуть.


На уровне моря атмосферное давление равно приблизительно 760 мм рт.ст., именно это значение и принято считать теперь нормальным атмосферным давлением, равным 101325 Па или одной физической атмосфере, 1 атм. То есть 1 миллиметр ртутного столба равен 101325/760 паскаль.

В миллиметрах ртутного столба измеряют давление в медицине, в метеорологии, в авиационной навигации. В медицине кровное давление измеряют в мм рт.ст, в вакуумной технике приборы для измерения давления градуируются в мм рт.ст, наряду с барами. Иногда даже просто пишут 25 мкм, подразумевая микроны ртутного столба, если речь идет о вакуумировании, а измерения давления осуществляют вакуумметрами.

В некоторых случаях используют миллиметры водяного столба, и тогда 13,59 мм вод.ст = 1мм рт.ст. Иногда это более целесообразно и удобно. Миллиметр водяного столба, как и миллиметр ртутного столба - внесистемная единица, равная в свою очередь гидростатическому давлению 1 мм столба воды, которое этот столб оказывает на плоское основание при температуре воды столба 4°С.

Комментарии

Проблема артериальной гипертонии стала одной из наиболее актуальных в современной медицине. Большое число людей страдает повышением артериального давления (АД). Инфаркт, инсульт, слепота, почечная недостаточнось - все это грозные осложнения гипертонии, результат неправильного лечения или его отсутствия вообще. Есть только один способ избежать опасных осложнений - поддержание постоянного нормального уровня артериального давления с помощью современных качественных препаратов.

Подбор лекарств - дело врача. От пациента требуется понимание необходимости лечения, соблюдение рекомендаций врача и, главное, постоянный самоконтроль.

Каждый пациент, страдающий гипертонией, должен регулярно измерять и записывать свое давление, вести дневник самочувствия. Это поможет доктору оценить эффективность лечения, адекватно подобрать дозу препарата, оценить риск возможных осложнений и эффективно предотвратить их.

При этом важно измерять давление и знать его среднесуточный уровень именно в домашних условиях, т.к. цифры давления, полученные на приеме у врача, часто бывают завышенными: пациент волнуется, устал, сидя в очереди, забыл принять лекарство и по многим другим причинам. И, наоборот, дома могут возникать ситуации, которые вызывают резкое повышение давления: стрессы, физические нагрузки и другое.

Поэтому каждый гипертоник должен иметь возможность измерить давление дома в спокойной привычной обстановке, чтобы иметь представление об истинном уровне давления.

КАК ПРАВИЛЬНО ИЗМЕРЯТЬ ДАВЛЕНИЕ?

При измерении АД необходимо придерживаться некоторых правил:

Измеряйте давление в спокойной обстановке при комфортной температуре, не ранее чем через 1 - 2 часа после приема пищи, не ранее чем через 1 час после курения, употребления кофе. Сядьте удобно, опираясь на спинку стула, не скрещивая ноги. Рука должна быть обнажена, а остальная одежда не должны быть узкой, тесной. Не разговаривайте, это может повлиять на правильность измерения АД.

Манжета должна иметь соответствующие размеру руки длину и ширину. Если окружность плеча превышает 32 см или плечо имеет конусовидную форму, что затрудняет правильность наложения манжеты, необходима специальная манжета, т.к. использование узкой или короткой манжеты приводит к существенному завышению цифр АД.

Наложите манжету так, чтобы ее нижний край был на 2,5 см выше края локтевой ямки. Не сжимайте ее слишком туго - между плечом и манжетой должен свободно проходить палец. Наложите стетоскоп в место наилучшего прослушивания пульсации плечевой артерии сразу над локтевой ямкой. Мембрана стетоскопа должна плотно прилегать к коже. Но не давите слишком сильно, чтобы избежать дополнительного пережатия плечевой артерии. Стетоскоп не должен касаться трубок тонометра, чтобы звуки от соприкосновения с ними не помешали измерению.

Расположите стетоскоп на уровне сердца обследуемого или на уровне его 4-го ребра. Нагнетайте воздух в манжету энергично, медленное нагнетание приводит к усилению болевых ощущений и ухудшает качество восприятия звука. Выпускайте воздух из манжеты медленно - 2 мм рт. ст. в секунду; чем медленнее выпускать воздух, тем выше качество измерения.

Повторное измерение АД возможно через 1 - 2 минуты после полного выхода воздуха из манжеты. АД может колебаться от минуты к минуте, поэтому среднее значение двух и более измерений более точно отражает истинное внутриартериальное давление. СИСТОЛИЧЕСКОЕ И ДИАСТОЛИЧЕСКОЕ ДАВЛЕНИЕ

Чтобы определить параметры давления, необходимо правильно оценить звуки, которые слышны «в стетоскопе».

Систолическое давление определяется по ближайшему делению шкалы, у которого стали слышны первые последовательные тоны. При выраженных нарушениях ритма для точности необходимо сделать несколько измерений подряд.

Диастолическое давление определяется или по резкому снижению громкости тонов, или по полному их прекращению. Эффект нулевого давления, т.е. непрекращающихся до 0 тонов, может наблюдаться при некоторых патологических состояниях (тиреотоксикоз, пороки сердца), беременности, у детей. При диастолическом давлении выше 90 мм рт. ст. необходимо продолжать измерение АД на протяжении еще 40 мм рт. ст. после исчезновения последнего тона, чтобы избежать ложно завышенных значений диастолического давления из-за явлений «аускультативного провала» - временного прекращения тонов.

Часто для получения более точного результата необходимо измерить давление несколько раз подряд, а иногда и вычислить среднее значение, которое более точно соответствует истинному внутриартериальному давлению.

ЧЕМ ИЗМЕРЯТЬ ДАВЛЕНИЕ?

Для измерения давления врачи и пациенты используют различные виды тонометров. Тонометры различают по нескольким признакам:

По месту расположения манжеты: лидируют тонометры «на плечо» - манжета накладывается на плечо. Это положение манжеты позволяет получить наиболее точный результат измерений. В многочисленных исследованиях доказано, что все другие положения («манжета на запястье», «манжета на пальце») могут давать значительные расхождения с истинным давлением. Результат измерений запястным прибором очень зависит от положения манжеты относительно сердца в момент измерения и, самое главное, от алгоритма измерения, использованного в конкретном приборе. При использовании пальцевых тонометров результат может зависеть даже от температуры пальца и других параметров. Такие тонометры не могут быть рекомендованы к использованию.

Стрелочный или цифровой - в зависимости от типа определения результатов измерения. У цифрового тонометра имеется небольшой экран, на котором высвечиваются пульс, давление и некоторые другие параметры. У стрелочного тонометра имеется циферблат и стрелка, и результат измерения фиксирует сам исследователь.

Тонометр может быть механический, полуавтоматический или полностью автоматический, в зависимости от типа устройства нагнетания воздуха и метода измерения. КАКОЙ ТОНОМЕТР ВЫБРАТЬ?

Каждый тонометр имеет свои особенности, преимущества и недостатки. Поэтому, если вы решили купить тонометр, обратите внимание на особенности каждого из них.

Манжета: должна по размеру соответствовать вашей руке. Стандартная манжета предназначена для руки с длиной окружности 22 - 32 см. Если у вас крупная рука - необходимо приобрести манжету большего размера. Для измерения давления у детей существуют маленькие детские манжеты. В особых случаях (врожденные пороки) требуются манжеты для измерения давления на бедре.
Лучше, если манжета сделана из нейлона, оснащена металлическим кольцом, что значительно облегчает процесс закрепления манжеты на плече при самостоятельном измерении давления. Внутренняя камера должна быть выполнена по бесшовной технологии или иметь специальную форму, что обеспечивает манжете прочность и делает измерение более комфортным.

Фонендоскоп: обычно фонендоскоп идет в комплекте с тонометром. Обратите внимание на его качество. Для домашнего измерения давления удобно, когда тонометр оснащен встроенным фонендоскопом. Это большое удобство, так как в таком случае фонендоскоп не нужно держать в руках. Кроме того, нет необходимости заботиться о правильности его месторасположения, что бывает серьезной проблемой при самостоятельном измерении и отсутствии достаточного опыта.

Манометр: манометр для механического тонометра должен быть с яркими четкими делениями, иногда они бывают даже светящиеся, что удобно при измерении в темном помещении или ночью. Лучше, если манометр оснащен металлическим корпусом, такой манометр долговечнее.

Очень удобно, когда манометр совмещен с грушей - элементом нагнетания воздуха. Это облегчает процесс измерения давления, позволяет правильно расположить манометр относительно пациента, повышает точность полученного результата.

Груша: как уже говорилось выше, хорошо, если груша совмещена с манометром. Качественная груша оснащена металлическим винтом. Кроме того, если вы левша, обратите внимание, что груши бывают адаптированные к работе правой или левой рукой.

Дисплей: при выборе тонометра имеют значение размеры дисплея. Есть дисплеи маленькие, где высвечивается только один параметр - например, последнее измерение АД. На большом дисплее можно увидеть результат измерения давления и пульса, цветовую шкалу давления, значение среднего давления из нескольких последних измерений, индикатор аритмии, индикатор заряда батареи.

Дополнительные функции: автоматический тонометр может быть оснащен такими удобными функциями, как:
индикатор аритмии - при нарушении ритма сердца вы увидите отметку об этом на дисплее или услышите звуковой сигнал. Наличие аритмии искажает правильность определения АД, особенно при однократном измерении. В этом случае рекомендуется измерить давление несколько раз и определить среднее значение. Особые алгоритмы некоторых приборов позволяют производить точные измерения, несмотря на нарушения ритма;
память на несколько последних измерений. В зависимости от типа тонометра он может обладать функцией запоминания нескольких последних измерений от 1 до 90. Вы можете просмотреть свои данные, узнать последние цифры давления, составить график давления, вычислить среднее значение;
автоматическое вычисление среднего давления; звуковое оповещение;
функция ускоренного измерения давления без потери точности измерения; существуют семейные модели, в которых отдельные функциональные кнопки обеспечивают возможность независимого пользования тонометром двумя людьми, с отдельной памятью на последние измерения;
удобны модели, обеспечивающие возможность работы как от батареек, так и от общей электрической сети. В домашних условиях это не только повышает удобство измерения, но и снижает расходы на пользование прибором;
существуют модели тонометров, оснащенные принтером для распечатки последних показателей АД из памяти, а также приборы, совместимые с компьютером.

Таким образом, механический тонометр обеспечивает более высокое качество измерения в опытных руках, у исследователя с хорошим слухом и зрением, способным правильно и точно соблюсти все правила измерения АД. Кроме того, механический тонометр существенно дешевле.

Электронный (автоматический или полуавтоматический) тонометр хорош для домашнего измерения АД и может быть рекомендован людям, не имеющим навыков измерения АД методом аускультации, а также пациентам с пониженным слухом, зрением, реакцией, т.к. не требует от измеряющего непосредственного участия в измерении. Нельзя не оценить полезности таких функций, как автоматическая накачка воздуха, ускоренное измерение, память результатов измерения, вычисление среднего АД, индикатор аритмии и специальные манжеты, исключающие болезненные ощущения при измерении.

Однако точность электронных тонометров не всегда одинакова. Предпочтение следует отдавать клинически апробированным приборам, т. е. прошедшим испытания по всемирно известным протоколам (BHS, AAMI, International Protocol).

Источники Журнал «ПОТРЕБИТЕЛЬ. Экспертиза и Тесты», 38’2004, Мария Сасонко apteka.potrebitel.ru/data/7/67/54.shtml


Close