Örneğin \(2\); dizisi \(5\); \(8\); \(onbir\); \(14\)... aritmetik bir ilerlemedir, çünkü sonraki her öğe bir öncekinden üç kat farklıdır (bir öncekinden üç ekleyerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) negatif bir sayı da olabilir. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğenin numarasına eşit bir sayısal indeksle gösterilirler.

Örneğin, \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) aritmetik ilerlemesi \(a_1=2\); \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme \(b_1=7; d=4\) koşullarıyla belirtilir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk negatif) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme aşağıdaki koşullarla tanımlanır: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili birçok problem, asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen "kafa kafaya" karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez mi eklememiz gerekiyor? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları ilerlemenin n'inci terimi için formül ve \(n\) ilk terimin toplamı için formüldür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8.2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, sayısına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplam öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık hemen hemen her aritmetik ilerleme problemini çözmek için ihtiyacınız olan tüm bilgilere sahipsiniz. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemedeki tüm negatif terimlerin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyoruz... ve burada küçük bir nüans ortaya çıkıyor - \(n\)'i bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Sıfırdan büyük olması için \(a_n\)'a ihtiyacımız var. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve ilk pozitif elemanın \(66\) sayısına sahip olacağı ortaya çıktı. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)th'den \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için dördünü önceki öğeye ekleriz). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha vardır. Ancak bunları kolayca bulabilirsiniz.


Evet evet: aritmetik ilerleme sizin için bir oyuncak değil :)

Pekala arkadaşlar, eğer bu metni okuyorsanız, o zaman iç kanıt bana aritmetik ilerlemenin ne olduğunu henüz bilmediğinizi, ancak gerçekten (hayır, şöyle: Çooook!) bilmek istediğinizi söylüyor. Bu nedenle uzun tanıtımlarla sizi sıkmayacağım ve doğrudan konuya gireceğim.

Öncelikle birkaç örnek. Birkaç sayı kümesine bakalım:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Tüm bu setlerin ortak noktası nedir? İlk bakışta hiçbir şey yok. Ama aslında bir şey var. Yani: sonraki her öğe öncekinden aynı sayıda farklıdır.

Kendiniz karar verin. İlk küme, her biri bir öncekinden bir fazla olan ardışık sayılardan oluşur. İkinci durumda, bitişik sayılar arasındaki fark zaten beştir, ancak bu fark hala sabittir. Üçüncü durumda ise hiç kök yoktur. Bununla birlikte, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ ve $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, yani. ve bu durumda, sonraki her öğe $\sqrt(2)$ kadar artar (ve bu sayının irrasyonel olduğundan korkmayın).

Yani: bu tür dizilerin tümüne aritmetik ilerlemeler denir. Kesin bir tanım verelim:

Tanım. Her birinin bir öncekinden tam olarak aynı miktarda farklı olduğu sayı dizisine aritmetik ilerleme denir. Sayıların farklı olduğu miktara ilerleme farkı denir ve çoğunlukla $d$ harfiyle gösterilir.

Gösterim: $\left(((a)_(n)) \right)$ ilerlemenin kendisidir, $d$ onun farkıdır.

Ve sadece birkaç önemli not. İlk olarak, ilerleme yalnızca dikkate alınır sipariş edildi sayıların sırası: kesinlikle yazıldıkları sıraya göre okunmalarına izin verilir - başka hiçbir şeye izin verilmez. Sayılar yeniden düzenlenemez veya değiştirilemez.

İkincisi, dizinin kendisi sonlu veya sonsuz olabilir. Örneğin (1; 2; 3) kümesinin sonlu bir aritmetik ilerleme olduğu açıktır. Ancak (1; 2; 3; 4; ...) ruhuyla bir şey yazarsanız, bu zaten sonsuz bir ilerlemedir. Dörtten sonraki üç nokta, daha pek çok sayının geleceğini ima ediyor gibi görünüyor. Mesela sonsuz sayıda :)

İlerlemelerin artabileceğini veya azalabileceğini de belirtmek isterim. Artanları zaten gördük - aynı küme (1; 2; 3; 4; ...). İşte azalan ilerlemelerin örnekleri:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Tamam tamam: son örnek aşırı karmaşık görünebilir. Ama gerisini sanırım anlıyorsunuz. Bu nedenle yeni tanımlar sunuyoruz:

Tanım. Aritmetik ilerlemeye denir:

  1. her bir sonraki öğenin bir öncekinden büyük olması durumunda artan;
  2. aksine, sonraki her öğe bir öncekinden daha azsa azalır.

Ek olarak, "durağan" diziler de vardır - bunlar aynı tekrar eden sayıdan oluşur. Örneğin, (3; 3; 3; ...).

Geriye tek bir soru kalıyor: Artan ilerlemeyi azalan ilerlemeden nasıl ayırt edebiliriz? Neyse ki, buradaki her şey yalnızca $d$ sayısının işaretine bağlıdır, yani. ilerleme farklılıkları:

  1. $d \gt 0$ ise ilerleme artar;
  2. Eğer $d \lt 0$ ise ilerleme açıkça azalıyor demektir;
  3. Son olarak, $d=0$ durumu vardır - bu durumda tüm ilerleme aynı sayıların sabit bir dizisine indirgenir: (1; 1; 1; 1; ...), vb.

Yukarıda verilen üç azalan ilerleme için $d$ farkını hesaplamaya çalışalım. Bunu yapmak için herhangi iki bitişik öğeyi (örneğin birinci ve ikinci) alıp soldaki sayıyı sağdaki sayıdan çıkarmak yeterlidir. Bunun gibi görünecek:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Gördüğümüz gibi her üç durumda da fark aslında negatif çıktı. Artık tanımları az çok anladığımıza göre, ilerlemelerin nasıl tanımlandığını ve hangi özelliklere sahip olduğunu anlamanın zamanı geldi.

İlerleme terimleri ve yineleme formülü

Dizilerimizin elemanları değiştirilemediği için numaralandırılabilirler:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \Sağ\)\]

Bu kümenin bireysel elemanlarına bir ilerlemenin üyeleri denir. Bir sayıyla belirtilirler: birinci üye, ikinci üye vb.

Ek olarak, zaten bildiğimiz gibi, ilerlemenin komşu terimleri aşağıdaki formülle ilişkilidir:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Kısacası, bir ilerlemenin $n$th terimini bulmak için $n-1$th terimini ve $d$ farkını bilmeniz gerekir. Bu formüle yinelenen denir, çünkü onun yardımıyla herhangi bir sayıyı yalnızca öncekini (ve aslında tüm öncekileri) bilerek bulabilirsiniz. Bu çok sakıncalıdır, bu nedenle hesaplamaları ilk terime ve farka indirgeyen daha kurnaz bir formül vardır:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Muhtemelen bu formülle zaten karşılaşmışsınızdır. Bunu her türlü referans kitabında ve problem kitaplarında vermeyi severler. Ve herhangi bir mantıklı matematik ders kitabında ilklerden biridir.

Ancak biraz pratik yapmanızı öneririm.

Görev No.1. Aritmetik ilerlemenin ilk üç terimini $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$ yazın.

Çözüm. Yani, ilk terimi $((a)_(1))=8$ ve $d=-5$ ilerlemesinin farkını biliyoruz. Az önce verilen formülü kullanalım ve $n=1$, $n=2$ ve $n=3$ yerine koyalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(hizala)\]

Cevap: (8; 3; −2)

Bu kadar! Lütfen dikkat: ilerlememiz azalıyor.

Tabii ki, $n=1$ değiştirilemez - ilk terim bizim tarafımızdan zaten bilinmektedir. Ancak birliği yerine koyarak formülümüzün ilk terim için bile işe yaradığına ikna olduk. Diğer durumlarda her şey banal aritmetiğe indirgendi.

Görev No.2. Bir aritmetik dizinin yedinci terimi -40'a ve on yedinci terimi -50'ye eşitse ilk üç terimini yazın.

Çözüm. Sorunun durumunu tanıdık terimlerle yazalım:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Sağ.\]

Sistem işaretini koydum çünkü bu gereksinimlerin aynı anda karşılanması gerekiyor. Şimdi şunu belirtelim ki ikinci denklemden birinciyi çıkarırsak (sistemimiz olduğu için bunu yapmaya hakkımız var) şunu elde ederiz:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(hizala)\]

İlerleme farkını bulmak işte bu kadar kolay! Geriye kalan tek şey, bulunan sayıyı sistemdeki denklemlerden herhangi birine koymaktır. Örneğin, ilkinde:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matris)\]

Şimdi ilk terimi ve farkı bildiğimize göre, ikinci ve üçüncü terimleri bulmaya devam ediyoruz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(hizala)\]

Hazır! Problem çözüldü.

Cevap: (−34; −35; −36)

İlerlemeyle ilgili keşfettiğimiz ilginç özelliğe dikkat edin: $n$th ve $m$th terimlerini alıp bunları birbirinden çıkarırsak, ilerlemenin farkını $n-m$ sayısıyla çarparak elde ederiz:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Kesinlikle bilmeniz gereken basit ama çok kullanışlı bir özellik - onun yardımıyla birçok ilerleme sorununun çözümünü önemli ölçüde hızlandırabilirsiniz. İşte bunun açık bir örneği:

Görev No.3. Bir aritmetik ilerlemenin beşinci terimi 8,4, onuncu terimi ise 14,4'tür. Bu ilerlemenin on beşinci terimini bulun.

Çözüm. $((a)_(5))=8.4$, $((a)_(10))=14.4$ ve $((a)_(15))$'ı bulmamız gerektiğinden, şunu not ediyoruz:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(hizala)\]

Ancak $((a)_(10))-((a)_(5))=14.4-8.4=6$ koşuluna göre, dolayısıyla $5d=6$, bundan şunu elde ederiz:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(hizala)\]

Cevap: 20.4

Bu kadar! Herhangi bir denklem sistemi oluşturmamıza ve ilk terimi ve farkı hesaplamamıza gerek yoktu; her şey sadece birkaç satırda çözüldü.

Şimdi başka bir problem türüne bakalım; bir ilerlemenin negatif ve pozitif terimlerini aramaya. Bir ilerleme artarsa ​​ve ilk terimi negatifse, er ya da geç olumlu terimlerin içinde görüneceği bir sır değildir. Ve bunun tersi de geçerlidir: azalan ilerlemenin koşulları er ya da geç olumsuz hale gelecektir.

Aynı zamanda unsurları sırayla geçerek bu anı “kafa kafaya” bulmak her zaman mümkün olmuyor. Çoğu zaman problemler öyle bir şekilde yazılır ki formülleri bilmeden hesaplamalar birkaç sayfa kağıt alır; biz cevabı bulduğumuzda uykuya dalarız. Bu nedenle bu sorunları daha hızlı çözmeye çalışalım.

Görev No.4. Aritmetik ilerlemede kaç tane negatif terim var −38,5; −35,8; ...?

Çözüm. Yani, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, buradan farkı hemen buluruz:

Farkın pozitif olduğunu, dolayısıyla ilerlemenin arttığını unutmayın. İlk terim negatiftir, dolayısıyla bir noktada pozitif sayılara rastlayacağız. Tek soru bunun ne zaman olacağıdır.

Terimlerin olumsuzluğunun ne kadar süreyle (yani hangi $n$ doğal sayısına kadar) kaldığını bulmaya çalışalım:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \sağ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(hizala)\]

Son satır biraz açıklama gerektiriyor. Yani $n \lt 15\frac(7)(27)$ olduğunu biliyoruz. Öte yandan, sayının yalnızca tamsayı değerleriyle yetiniyoruz (ayrıca: $n\in \mathbb(N)$), dolayısıyla izin verilen en büyük sayı tam olarak $n=15$'dır ve hiçbir durumda 16 değildir. .

Görev No.5. Aritmetik ilerlemede $(()_(5))=-150,(()_(6))=-147$. Bu ilerlemenin ilk pozitif teriminin sayısını bulun.

Bu, bir öncekiyle tamamen aynı problem olacaktır, ancak $((a)_(1))$'ı bilmiyoruz. Ancak komşu terimler biliniyor: $((a)_(5))$ ve $((a)_(6))$, böylece ilerlemenin farkını kolayca bulabiliriz:

Ayrıca standart formülü kullanarak beşinci terimi birinci ve fark üzerinden ifade etmeye çalışalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(hizala)\]

Şimdi önceki göreve benzeterek ilerliyoruz. Pozitif sayıların dizimizin hangi noktasında görüneceğini öğrenelim:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(hizala)\]

Bu eşitsizliğin minimum tamsayı çözümü 56 sayısıdır.

Lütfen unutmayın: son görevde her şey katı eşitsizliğe indi, bu nedenle $n=55$ seçeneği bize uymayacaktır.

Artık basit problemleri nasıl çözeceğimizi öğrendiğimize göre, daha karmaşık problemlere geçelim. Ama önce aritmetik ilerlemelerin çok yararlı başka bir özelliğini inceleyelim; bu gelecekte bize çok fazla zaman kazandıracak ve eşit olmayan hücrelere sahip olmamızı sağlayacak :)

Aritmetik ortalama ve eşit girintiler

Artan aritmetik ilerlemenin birkaç ardışık terimini ele alalım $\left(((a)_(n)) \right)$. Bunları sayı doğrusunda işaretlemeye çalışalım:

Sayı doğrusunda aritmetik ilerlemenin terimleri

Özellikle $((a)_(n-3))),...,((a)_(n+3))$ gibi rastgele terimleri işaretledim, $((a)_(1)) ,\'yi değil. ((a)_(2))),\ ((a)_(3))$, vb. Çünkü şimdi anlatacağım kural her “segment” için aynı şekilde işliyor.

Ve kural çok basit. Tekrarlayan formülü hatırlayalım ve işaretli tüm terimler için yazalım:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(hizala)\]

Ancak bu eşitlikler farklı şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(hizala)\]

Peki ne olmuş? Ve $((a)_(n-1))$ ve $((a)_(n+1))$ terimlerinin $((a)_(n)) $'dan aynı uzaklıkta olması . Ve bu mesafe $d$'a eşittir. Aynı şey $((a)_(n-2))$ ve $((a)_(n+2))$ terimleri için de söylenebilir - bunlar aynı zamanda $((a)_(n) öğesinden de kaldırılmıştır. )$ aynı mesafede $2d$'a eşittir. Sonsuza kadar devam edebiliriz, ancak bunun anlamı resimde çok iyi bir şekilde gösterilmiştir.


İlerleme koşulları merkezden aynı uzaklıkta yer alır

Bu bizim için ne anlama geliyor? Bu, eğer komşu sayılar biliniyorsa $((a)_(n))$ öğesinin bulunabileceği anlamına gelir:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1))))(2)\]

Mükemmel bir ifade elde ettik: Bir aritmetik ilerlemenin her terimi, komşu terimlerin aritmetik ortalamasına eşittir! Üstelik: $((a)_(n))$'dan sola ve sağa bir adım değil, $k$ adımlarla geri adım atabiliriz - ve formül yine de doğru olacaktır:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k))))(2)\]

Onlar. $((a)_(100))$ ve $((a)_(200))$$'ı biliyorsak kolayca $((a)_(150))$ bulabiliriz, çünkü $(( a)_ (150))=\frac(((a)_(100))+((a)_(200))))(2)$. İlk bakışta bu gerçeğin bize hiçbir faydası olmadığı düşünülebilir. Ancak pratikte birçok problem aritmetik ortalamayı kullanacak şekilde özel olarak uyarlanmıştır. Bir göz at:

Görev No. 6. $-6((x)^(2))$, $x+1$ ve $14+4((x)^(2))$ sayılarının ardışık terimler olduğu tüm $x$ değerlerini bulun. aritmetik ilerleme (belirtilen sıraya göre).

Çözüm. Bu sayılar bir ilerlemenin üyeleri olduğundan, aritmetik ortalama koşulu onlar için karşılanmıştır: merkezi öğe $x+1$ komşu öğeler cinsinden ifade edilebilir:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2))))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(hizala)\]

Sonuç klasik ikinci dereceden bir denklemdir. Kökleri: $x=2$ ve $x=-3$ yanıtlardır.

Cevap: −3; 2.

Görev No.7. $-1;4-3;(()^(2))+1$ sayılarının aritmetik bir ilerleme oluşturduğu (bu sırayla) $$ değerlerini bulun.

Çözüm. Ortadaki terimi yine komşu terimlerin aritmetik ortalaması üzerinden ifade edelim:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \sağ.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(hizala)\]

Tekrar ikinci dereceden denklem. Ve yine iki kök var: $x=6$ ve $x=1$.

Cevap 1; 6.

Bir sorunu çözme sürecinde bazı acımasız rakamlarla karşılaşırsanız veya bulunan cevapların doğruluğundan tam olarak emin değilseniz, o zaman kontrol etmenizi sağlayan harika bir teknik var: sorunu doğru çözdük mü?

Diyelim ki 6 numaralı problemde -3 ve 2 cevaplarını aldık. Bu cevapların doğru olduğunu nasıl kontrol edebiliriz? Bunları orijinal durumuna takalım ve ne olacağını görelim. Bir aritmetik ilerleme oluşturması gereken üç sayımız ($-6(()^(2))$, $+1$ ve $14+4(()^(2))$) olduğunu hatırlatmama izin verin. $x=-3$ yerine koyalım:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(hizala)\]

−54 sayısını aldık; −2; Farkı 52 olan 50 sayısı şüphesiz bir aritmetik ilerlemedir. Aynı şey $x=2$ için de olur:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(hizala)\]

Yine ilerleme oldu ama 27'lik bir farkla. Böylece sorun doğru bir şekilde çözüldü. İsteyen ikinci sorunu kendi başına kontrol edebilir ama hemen söyleyeyim: orada da her şey doğru.

Genel olarak son problemleri çözerken hatırlanması gereken ilginç bir gerçekle daha karşılaştık:

Eğer üç sayı ikincisi birincinin ve sonuncunun aritmetik ortalaması olacak şekildeyse, bu sayılar aritmetik bir ilerleme oluşturur.

Gelecekte bu ifadeyi anlamak, sorunun koşullarına dayalı olarak gerekli ilerlemeleri kelimenin tam anlamıyla "inşa etmemize" olanak tanıyacaktır. Ancak böyle bir "inşaa" girişmeden önce, daha önce tartışılanlardan doğrudan çıkan bir gerçeğe daha dikkat etmeliyiz.

Öğeleri gruplama ve toplama

Tekrar sayı eksenine dönelim. Burada ilerlemenin birkaç üyesini not edelim, belki bunlar arasında. diğer birçok üyeye değer:

Sayı doğrusunda 6 eleman işaretlenmiştir

“Sol kuyruğu” $((a)_(n))$ ve $d$ aracılığıyla ve “sağ kuyruğu” $((a)_(k))$ ve $d$ aracılığıyla ifade etmeye çalışalım. Çok basit:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(hizala)\]

Şimdi aşağıdaki miktarların eşit olduğunu unutmayın:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(hizala)\]

Basitçe söylemek gerekirse, ilerlemenin toplamda $S$ sayısına eşit olan iki unsurunu başlangıç ​​olarak düşünürsek ve sonra bu unsurlardan zıt yönlerde (birbirine doğru veya tam tersi uzaklaşmak için) adım atmaya başlarsak, Daha sonra rastlayacağımız elementlerin toplamları da eşit olacak$S$. Bu en açık şekilde grafiksel olarak gösterilebilir:


Eşit girintiler eşit miktarlar verir

Bu gerçeği anlamak, yukarıda düşündüklerimizden temelde daha yüksek düzeyde karmaşıklığa sahip sorunları çözmemize olanak sağlayacaktır. Örneğin, bunlar:

Görev No.8. İlk terimi 66 olan ve ikinci ve onikinci terimlerin çarpımının mümkün olan en küçük olduğu bir aritmetik ilerlemenin farkını belirleyin.

Çözüm. Bildiğimiz her şeyi yazalım:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(hizala)\]

Yani $d$ ilerleme farkını bilmiyoruz. Aslında, $((a)_(2))\cdot ((a)_(12))$ çarpımı aşağıdaki gibi yeniden yazılabileceğinden, çözümün tamamı fark etrafında inşa edilecektir:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(hizala)\]

Tanktakiler için: İkinci gruptan toplam 11 çarpanını çıkardım. Dolayısıyla gerekli çarpım $d$ değişkenine göre ikinci dereceden bir fonksiyondur. Bu nedenle, $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ fonksiyonunu düşünün - grafiği, dalları yukarıya doğru olan bir parabol olacaktır, çünkü parantezleri genişletirsek şunu elde ederiz:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Gördüğünüz gibi en yüksek terimin katsayısı 11'dir - bu pozitif bir sayıdır, yani aslında yukarı doğru dalları olan bir parabolle uğraşıyoruz:


ikinci dereceden bir fonksiyonun grafiği - parabol

Lütfen unutmayın: Bu parabol minimum değerini tepe noktasında $((d)_(0))$ $((d)_(0))$ ile alır. Elbette, bu apsisi standart şemayı kullanarak hesaplayabiliriz ($((d)_(0))=(-b)/(2a)\;$ formülü vardır), ancak bunu not etmek çok daha mantıklı olacaktır. istenen tepe noktası parabolün eksen simetrisi üzerinde yer alır, bu nedenle $((d)_(0))$ noktası $f\left(d \right)=0$ denkleminin köklerinden eşit uzaklıktadır:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(hizala)\]

Bu yüzden parantezleri açmak için özel bir acelem yoktu: orijinal hallerinde kökleri bulmak çok çok kolaydı. Bu nedenle apsis, −66 ve −6 sayılarının aritmetik ortalamasına eşittir:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Keşfedilen sayı bize ne veriyor? Bununla birlikte, gerekli ürün en küçük değeri alır (bu arada, $((y)_(\min ))$'ı hiçbir zaman hesaplamadık - bu bizim için gerekli değildir). Aynı zamanda bu sayı orijinal ilerlemenin farkıdır, yani. Cevabı bulduk :)

Cevap: −36

Görev No.9. $-\frac(1)(2)$ ve $-\frac(1)(6)$ sayıları arasına üç sayı ekleyin, böylece bu sayılarla birlikte bir aritmetik ilerleme oluştursunlar.

Çözüm. Temel olarak, ilk ve son sayı zaten bilinen beş sayıdan oluşan bir dizi oluşturmamız gerekiyor. Eksik sayıları $x$, $y$ ve $z$ değişkenleriyle gösterelim:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

$y$ sayısının dizimizin "ortası" olduğuna dikkat edin - $x$ ve $z$ sayılarından ve $-\frac(1)(2)$ ve $-\frac sayılarından eşit uzaklıkta (1)(6)$. Ve şu anda $x$ ve $z$ sayılarından $y$ elde edemiyorsak, ilerlemenin sonlarında durum farklıdır. Aritmetik ortalamayı hatırlayalım:

Şimdi $y$'ı bildiğimize göre kalan sayıları bulacağız. $x$'ın az önce bulduğumuz $-\frac(1)(2)$ ve $y=-\frac(1)(3)$ sayıları arasında yer aldığını unutmayın. Bu yüzden

Benzer akıl yürütmeyi kullanarak kalan sayıyı buluruz:

Hazır! Üç sayıyı da bulduk. Bunları orijinal sayıların arasına yerleştirilmesi gereken sırayla cevapta yazalım.

Cevap: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Görev No. 10. 2 ile 42 sayıları arasına, eklenen sayıların birinci, ikinci ve sonuncusunun toplamının 56 olduğunu biliyorsanız, bu sayılarla birlikte aritmetik bir ilerleme oluşturan birkaç sayı ekleyin.

Çözüm. Bununla birlikte, öncekilerle aynı şemaya göre aritmetik ortalama yoluyla çözülen daha da karmaşık bir problem. Sorun şu ki, kaç sayının eklenmesi gerektiğini tam olarak bilmiyoruz. Bu nedenle, kesin olarak, her şeyi yerleştirdikten sonra tam olarak $n$ sayıların olacağını ve bunların ilkinin 2 ve sonuncusunun 42 olduğunu varsayalım. Bu durumda gerekli aritmetik ilerleme şu şekilde gösterilebilir:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \sağ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Ancak $((a)_(2))$ ve $((a)_(n-1))$ sayılarının kenarlardaki 2 ve 42 sayılarından birbirine bir adım yaklaşarak elde edildiğini unutmayın, yani. dizinin merkezine. Ve bu şu anlama geliyor

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ancak bu durumda yukarıda yazılan ifade şu şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(hizala)\]

$((a)_(3))$ ve $((a)_(1))$'ı bildiğimiz için ilerlemenin farkını kolayca bulabiliriz:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Sağ ok d=5. \\ \end(hizala)\]

Geriye kalan tek şey kalan terimleri bulmak:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(hizala)\]

Böylece, 9. adımda dizinin sol ucuna ulaşacağız - 42 sayısı. Toplamda yalnızca 7 sayının eklenmesi gerekiyordu: 7; 12; 17; 22; 27; 32; 37.

Cevap: 7; 12; 17; 22; 27; 32; 37

İlerlemelerle ilgili kelime problemleri

Sonuç olarak, nispeten basit birkaç sorunu ele almak istiyorum. Bu kadar basit: Okulda matematik eğitimi alan ve yukarıda yazılanları okumayan çoğu öğrenci için bu problemler zor görünebilir. Yine de bunlar matematikte OGE ve Birleşik Devlet Sınavında ortaya çıkan problem türleridir, bu yüzden bunlara aşina olmanızı öneririm.

Görev No.11. Ekip Ocak ayında 62 parça üretti ve sonraki her ayda bir önceki aya göre 14 parça daha fazla üretti. Ekip Kasım ayında kaç parça üretti?

Çözüm. Açıkçası, aya göre listelenen parça sayısı artan bir aritmetik ilerlemeyi temsil edecektir. Dahası:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Kasım yılın 11. ayı olduğundan $((a)_(11))$ bulmamız gerekiyor:

\[((a)_(11))=62+10\cdot 14=202\]

Dolayısıyla kasım ayında 202 parça üretilecek.

Görev No. 12. Ciltleme atölyesi Ocak ayında 216 kitap ciltledi ve sonraki her ayda bir öncekine göre 4 kitap daha ciltledi. Atölye Aralık ayında kaç kitap ciltledi?

Çözüm. Hepsi aynı:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Aralık yılın son 12. ayı olduğundan $((a)_(12))$ ifadesini arıyoruz:

\[((a)_(12))=216+11\cdot 4=260\]

Cevap bu: Aralık ayında 260 kitap ciltlenecek.

Buraya kadar okuduysanız sizi tebrik etmek için acele ediyorum: aritmetik ilerlemelerde "genç dövüşçü kursunu" başarıyla tamamladınız. İlerleme toplamı formülünü ve bunun önemli ve çok faydalı sonuçlarını inceleyeceğimiz bir sonraki derse güvenle geçebilirsiniz.

A*A-1 = E ise, A-1 matrisi, A matrisine göre ters matris olarak adlandırılır; burada E, n'inci dereceden birim matristir. Ters bir matris yalnızca kare matrisler için mevcut olabilir.

Hizmetin amacı. Bu hizmeti çevrimiçi olarak kullanarak cebirsel tümleyenleri, transpoze matris A T'yi, müttefik matrisi ve ters matrisi bulabilirsiniz. Karar doğrudan web sitesinde (çevrimiçi) gerçekleştirilir ve ücretsizdir. Hesaplama sonuçları Word ve Excel formatında bir rapor halinde sunulur (yani çözümü kontrol etmek mümkündür). tasarım örneğine bakın.

Talimatlar. Çözüm elde etmek için matrisin boyutunun belirtilmesi gerekir. Daha sonra yeni iletişim kutusunda A matrisini doldurun.

Ayrıca bkz. Jordano-Gauss yöntemini kullanan ters matris

Ters matrisi bulmak için algoritma

  1. A T devrik matrisini bulma.
  2. Cebirsel tümleyenlerin tanımı. Matrisin her elemanını cebirsel tümleyeniyle değiştirin.
  3. Cebirsel toplamalardan ters bir matris derlemek: Ortaya çıkan matrisin her bir elemanı, orijinal matrisin determinantına bölünür. Ortaya çıkan matris orijinal matrisin tersidir.
Sonraki ters matrisi bulmak için algoritma bazı adımlar dışında öncekine benzer: önce cebirsel tamamlayıcılar hesaplanır ve ardından müttefik matris C belirlenir.
  1. Matrisin kare olup olmadığını belirleyin. Değilse, o zaman bunun için ters matris yoktur.
  2. A matrisinin determinantının hesaplanması. Sıfıra eşit değilse çözüme devam ederiz, aksi takdirde ters matris mevcut değildir.
  3. Cebirsel tümleyenlerin tanımı.
  4. Birleşim (karşılıklı, ek) matrisinin doldurulması C .
  5. Cebirsel toplamalardan ters bir matris derlemek: C ek matrisinin her bir elemanı, orijinal matrisin determinantına bölünür. Ortaya çıkan matris orijinal matrisin tersidir.
  6. Bir kontrol yapıyorlar: orijinali ve ortaya çıkan matrisleri çarpıyorlar. Sonuç bir birim matris olmalıdır.

Örnek No.1. Matrisi şu şekilde yazalım:

Cebirsel eklemeler. ∆ 1,2 = -(2·4-(-2·(-2)))) = -4 ∆ 2,1 = -(2 4-5 3) = 7 ∆ 2,3 = -(-1 5-(-2 2)) = 1 ∆ 3,2 = -(-1·(-2)-2·3) = 4
bir -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Ters matrisi bulmak için başka bir algoritma

Ters matrisi bulmak için başka bir şema sunalım.
  1. Verilen bir A kare matrisinin determinantını bulun.
  2. A matrisinin tüm elemanlarının cebirsel tümleyenlerini buluyoruz.
  3. Satır elemanlarının sütunlara cebirsel olarak eklenmesini (transpozisyon) yazarız.
  4. Ortaya çıkan matrisin her bir elemanını A matrisinin determinantına bölüyoruz.
Gördüğümüz gibi, transpozisyon işlemi hem orijinal matrisin başında hem de sonuçta elde edilen cebirsel toplamaların sonunda uygulanabilir.

Özel bir durum: E birim matrisinin tersi, E birim matrisidir.

Belirli bir dizi için her bir elemanı ikinciden başlayarak bir öncekine eşit olan ve aynı sayıya eklenen sayısal diziye aritmetik ilerleme denir. Her arandığında bir önceki numaraya eklenen numara aranır aritmetik ilerleme farkı ve harfle belirtilir D.

Yani sayı dizisi 1'dir; bir 2; bir 3; bir 4; bir 5; ... ve eğer a 2 = a 1 + d ise n bir aritmetik ilerleme olacaktır;

a 3 = a 2 + d;

Ortak terimli bir aritmetik ilerlemenin verildiğini söylüyorlar ve n. Yazın: aritmetik bir ilerleme verilir (BİR).

Bir aritmetik ilerlemenin ilk terimi biliniyorsa tanımlanmış sayılır 1 ve fark D.

Aritmetik ilerleme örnekleri

Örnek 1. 1; 3; 5; 7; 9;...Burada 1 = 1; D = 2.

Örnek 2. 8; 5; 2; -1; -4; -7; -10;... İşte 1 = 8; D =-3.

Örnek 3.-16; -12; -8; -4;... İşte 1 = -16; D = 4.

İkinciden başlayarak ilerlemenin her teriminin, komşu terimlerin aritmetik ortalamasına eşit olduğuna dikkat edin.

1 örnekte ikinci dönem 3 =(1+5): 2; onlar. a 2 = (a 1 + a 3) : 2; üçüncü üye 5 =(3+7): 2;

yani a 3 = (a 2 + a 4) : 2.

Yani formül geçerlidir:

Fakat aslında bir aritmetik dizideki her üye, ikinciden başlayarak, yalnızca komşu üyelerin aritmetik ortalamasına değil, aynı zamanda eşit uzaklıktaüyelerinden, yani

Hadi dönelim örnek 2. Sayı -1 aritmetik ilerlemenin dördüncü terimidir ve birinci ve yedinci terimlere eşit derecede uzaktır (ve 1 = 8 ve 7 = -10).

Formül (**)'e göre elimizde:

Formülü türetelim N- Bir aritmetik ilerlemenin üçüncü terimi.

Yani, eğer farkı birinciye eklersek, aritmetik ilerlemenin ikinci terimini elde ederiz. D; farkı ikinciye eklersek üçüncü terimi elde ederiz D veya ilk terime iki fark ekleyin D; farkı üçüncüye eklersek dördüncü terimi elde ederiz D veya ilkine üç fark ekleyin D ve benzeri.

Tahmin ettiniz: a 2 = a 1 + d;

a 3 = a 2 + d = a 1 + 2d;

a 4 = a 3 + d = a 1 + 3d;

…………………….

a n = a n-1 + d = a 1 + (n-1) d.

Ortaya çıkan formül BİR = A 1 + (N-1) D (***)

isminde formülNBir aritmetik ilerlemenin üçüncü terimi.

Şimdi bir aritmetik ilerlemenin ilk n teriminin toplamını nasıl bulacağımızdan bahsedelim. Bu miktarı şu şekilde gösterelim: Sn.

Terimlerin yerlerinin yeniden düzenlenmesi toplamın değerini değiştirmez, dolayısıyla iki şekilde yazılabilir.

Sn= a 1 + a 2 + a 3 + a 4 + … + a n-3 + a n-2 + a n-1 + a n ve

Sn = bir n + bir n-1 + bir n-2 + bir n-3 + …...+ a 4 + a 3 + a 2 + a 1

Bu iki eşitliği terim terim toplayalım:

2S n= (a 1 + a n) + (a 2 + a n-1) + (a 3 + a n-2) + (a 4 + a n-3) + …


Kapalı