Operația aritmetică care se efectuează ultima la calcularea valorii expresiei este „principală”.

Adică dacă înlocuiți câteva (orice) numere în loc de litere și încercați să calculați valoarea expresiei, atunci dacă ultima acțiune este înmulțirea, atunci avem un produs (expresia este descompusă în factori).

Dacă ultima acțiune este adunarea sau scăderea, aceasta înseamnă că expresia nu este factorizată (și, prin urmare, nu poate fi redusă).

Pentru a rezolva singur, câteva exemple:

Exemple:

Solutii:

1. Sper ca nu te-ai grabit imediat sa tai si? Încă nu a fost suficient să „reducem” unități ca aceasta:

Primul pas ar trebui să fie factorizarea:

4. Adunarea și scăderea fracțiilor. Aducerea fracțiilor la un numitor comun.

Adunarea și scăderea fracțiilor obișnuite este o operație binecunoscută: căutăm un numitor comun, înmulțim fiecare fracție cu factorul care lipsește și adunăm/scădem numărătorii.

Să ne amintim:

Raspunsuri:

1. Numitorii și sunt coprime, adică nu au factori comuni. Prin urmare, LCM a acestor numere este egal cu produsul lor. Acesta va fi numitorul comun:

2. Aici numitorul comun este:

3. Aici, în primul rând, transformăm fracțiile mixte în fracțiuni improprii și apoi - conform schemei obișnuite:

Este cu totul altă problemă dacă fracțiile conțin litere, de exemplu:

Să începem simplu:

a) Numitorii nu conțin litere

Aici totul este la fel ca în cazul fracțiilor numerice obișnuite: găsim un numitor comun, înmulțim fiecare fracție cu factorul care lipsește și adunăm/scădem numărătorii:

acum, la numărător, puteți aduce altele similare, dacă există, și le puteți factoriza:

Incearca-l tu insuti:

Raspunsuri:

b) Numitorii conțin litere

Să ne amintim principiul găsirii unui numitor comun fără litere:

În primul rând, determinăm factorii comuni;

Apoi scriem toți factorii comuni o dată;

și înmulțiți-le cu toți ceilalți factori, nu cu cei comuni.

Pentru a determina factorii comuni ai numitorilor, mai întâi îi descompunem în factori simpli:

Subliniem factorii comuni:

Acum scriem factorii comuni o dată și adăugăm la ei toți factorii necomuni (nu subliniați):

Acesta este numitorul comun.

Să revenim la litere. Numitorii sunt dați exact în același mod:

Descompunem numitorii în factori;

determina multiplicatori comuni (identici);

scrie toți factorii comuni o dată;

Le înmulțim cu toți ceilalți factori, nu cu cei comuni.

Deci, în ordine:

1) descompuneți numitorii în factori:

2) determinați factorii comuni (identici):

3) scrieți toți factorii comuni o dată și înmulțiți-i cu toți ceilalți factori (nesubliniați):

Deci numitorul comun este aici. Prima fracție trebuie înmulțită cu, a doua - cu:

Apropo, există un singur truc:

De exemplu: .

Vedem aceiași factori în numitori, doar toți cu indicatori diferiți. Numitorul comun va fi:

in masura

in masura

in masura

în grad.

Să complicăm sarcina:

Cum se face ca fracțiile să aibă același numitor?

Să ne amintim proprietatea de bază a unei fracții:

Nicăieri nu se spune că același număr poate fi scăzut (sau adunat) de la numărătorul și numitorul unei fracții. Pentru că nu este adevărat!

Vedeți singur: luați orice fracție, de exemplu, și adăugați un număr la numărător și numitor, de exemplu, . Ce s-a învățat?

Deci, o altă regulă de neclintit:

Când aduceți fracții la un numitor comun, folosiți numai operația de înmulțire!

Dar ce trebuie să înmulți pentru a obține?

Aici și înmulțiți. Și înmulțiți cu:

Expresiile care nu pot fi factorizate vor fi numite „factori elementari”.

De exemplu, este un factor elementar. - La fel. Dar - nu: este descompus în factori.

Dar exprimare? Este elementar?

Nu, deoarece poate fi factorizat:

(ați citit deja despre factorizare în subiectul „”).

Deci, factorii elementari în care descompuneți o expresie cu litere sunt un analog al factorilor simpli în care descompuneți numerele. Și vom face același lucru cu ei.

Vedem că ambii numitori au un factor. Se va duce la numitorul comun în putere (vă amintiți de ce?).

Multiplicatorul este elementar și nu îl au în comun, ceea ce înseamnă că prima fracție va trebui pur și simplu înmulțită cu ea:

Alt exemplu:

Soluţie:

Înainte de a înmulți acești numitori într-o panică, trebuie să te gândești cum să-i factorizezi? Ambele reprezintă:

Grozav! Apoi:

Alt exemplu:

Soluţie:

Ca de obicei, factorizăm numitorii. În primul numitor, pur și simplu îl punem între paranteze; în al doilea - diferența de pătrate:

S-ar părea că nu există factori comuni. Dar dacă te uiți cu atenție, sunt deja atât de asemănătoare... Și adevărul este:

Deci hai sa scriem:

Adică, s-a dovedit așa: în paranteză, am schimbat termenii și, în același timp, semnul din fața fracției s-a schimbat la opus. Ia notă, va trebui să faci asta des.

Acum aducem la un numitor comun:

Am înţeles? Acum să verificăm.

Sarcini pentru soluție independentă:

Raspunsuri:

Aici trebuie să ne amintim încă un lucru - diferența de cuburi:

Vă rugăm să rețineți că numitorul celei de-a doua fracții nu conține formula „pătratul sumei”! Pătratul sumei ar arăta astfel:

A este așa-numitul pătrat incomplet al sumei: al doilea termen din acesta este produsul dintre primul și ultimul, și nu produsul lor dublat. Pătratul incomplet al sumei este unul dintre factorii de extindere a diferenței de cuburi:

Ce se întâmplă dacă există deja trei fracții?

Da, la fel! În primul rând, ne vom asigura că numărul maxim de factori din numitori este același:

Atenție: dacă schimbați semnele dintr-o paranteză, semnul din fața fracției se schimbă în opus. Când schimbăm semnele din a doua paranteză, semnul din fața fracției este inversat din nou. Drept urmare, el (semnul din fața fracției) nu s-a schimbat.

Scriem integral primul numitor în numitorul comun, apoi adăugăm la el toți factorii care nu au fost încă scriși, din al doilea, apoi din al treilea (și așa mai departe, dacă sunt mai multe fracții). Adică merge așa:

Hmm... Cu fracții, este clar ce să faci. Dar ce zici de cei doi?

Este simplu: știi cum să adunăm fracții, nu? Deci, trebuie să vă asigurați că zeul devine o fracțiune! Amintiți-vă: o fracție este o operație de împărțire (numărătorul este împărțit la numitor, în cazul în care ați uitat brusc). Și nu este nimic mai ușor decât împărțirea unui număr la. În acest caz, numărul în sine nu se va schimba, ci se va transforma într-o fracție:

Exact ce este nevoie!

5. Înmulțirea și împărțirea fracțiilor.

Ei bine, partea cea mai grea s-a terminat. Și în fața noastră este cel mai simplu, dar în același timp cel mai important:

Procedură

Care este procedura de calcul a unei expresii numerice? Amintiți-vă, având în vedere valoarea unei astfel de expresii:

ai numarat?

Ar trebui să funcționeze.

Deci, vă reamintesc.

Primul pas este să calculezi gradul.

Al doilea este înmulțirea și împărțirea. Dacă există mai multe înmulțiri și împărțiri în același timp, le puteți face în orice ordine.

Și, în sfârșit, facem adunarea și scăderea. Din nou, în orice ordine.

Dar: expresia dintre paranteze este evaluată în dezordine!

Dacă mai multe paranteze sunt înmulțite sau împărțite între ele, mai întâi evaluăm expresia din fiecare dintre paranteze, apoi le înmulțim sau le împărțim.

Ce se întâmplă dacă există și alte paranteze între paranteze? Ei bine, să ne gândim: o expresie este scrisă între paranteze. Care este primul lucru de făcut atunci când evaluezi o expresie? Așa e, calculează paranteze. Ei bine, ne-am dat seama: mai întâi calculăm parantezele interioare, apoi totul.

Deci, ordinea acțiunilor pentru expresia de mai sus este următoarea (acțiunea curentă este evidențiată cu roșu, adică acțiunea pe care o efectuez chiar acum):

Bine, totul este simplu.

Dar asta nu este același lucru cu o expresie cu litere, nu-i așa?

Nu, e la fel! Numai în loc de operații aritmetice este necesar să se facă operații algebrice, adică operațiile descrise în secțiunea anterioară: aducând similare, adunarea fracțiilor, reducerea fracțiilor și așa mai departe. Singura diferență va fi acțiunea de factorizare a polinoamelor (o folosim adesea când lucrăm cu fracții). Cel mai adesea, pentru factorizare, trebuie să utilizați i sau pur și simplu să scoateți factorul comun din paranteze.

De obicei, scopul nostru este de a reprezenta o expresie ca produs sau coeficient.

De exemplu:

Să simplificăm expresia.

1) Mai întâi simplificăm expresia dintre paranteze. Acolo avem diferența de fracții, iar scopul nostru este să o reprezentăm ca produs sau coeficient. Deci, aducem fracțiile la un numitor comun și adăugăm:

Este imposibil să simplificăm mai mult această expresie, toți factorii de aici sunt elementari (mai ții minte ce înseamnă asta?).

2) obținem:

Înmulțirea fracțiilor: ce ar putea fi mai ușor.

3) Acum puteți scurta:

OK, totul sa terminat acum. Nimic complicat, nu?

Alt exemplu:

Simplificați expresia.

Mai întâi, încercați să o rezolvați singur și abia apoi uitați-vă la soluție.

Soluţie:

În primul rând, să definim procedura.

Mai întâi, să adăugăm fracțiile dintre paranteze, în loc de două fracții, se va dovedi una.

Apoi vom face împărțirea fracțiilor. Ei bine, adăugăm rezultatul cu ultima fracție.

Voi numerota schematic pașii:

Acum voi arăta întregul proces, colorând acțiunea curentă cu roșu:

1. Daca sunt asemanatoare, acestea trebuie aduse imediat. În orice moment avem altele asemănătoare, este indicat să le aducem imediat.

2. Același lucru este valabil și pentru fracțiile reducătoare: de îndată ce apare o oportunitate de reducere, aceasta trebuie folosită. Excepție fac fracțiile pe care le adunați sau scădeți: dacă acum au aceiași numitori, atunci reducerea ar trebui lăsată pentru mai târziu.

Iată câteva sarcini pe care le puteți rezolva singur:

Și a promis chiar de la început:

Raspunsuri:

Soluții (pe scurt):

Dacă ați făcut față cel puțin primelor trei exemple, atunci, luați în considerare, ați stăpânit subiectul.

Acum, la învățare!

CONVERSIUNEA EXPRESIILOR. REZUMAT ȘI FORMULA DE BAZĂ

Operatii de simplificare de baza:

  • Aducerea asemănătoare: pentru a adăuga (reduce) termeni similari, trebuie să adăugați coeficienții acestora și să atribuiți partea de litere.
  • Factorizare: scoaterea factorului comun din paranteze, aplicarea etc.
  • Reducerea fracțiilor: numărătorul și numitorul unei fracții pot fi înmulțite sau împărțite cu același număr diferit de zero, din care valoarea fracției nu se modifică.
    1) numărătorul și numitorul factorizați
    2) dacă există factori comuni la numărător și numitor, aceștia pot fi tăiați.

    IMPORTANT: numai multiplicatorii pot fi redusi!

  • Adunarea și scăderea fracțiilor:
    ;
  • Înmulțirea și împărțirea fracțiilor:
    ;

O expresie de forma a (m/n), unde n este un număr natural, m este un număr întreg și baza gradului a este mai mare decât zero, se numește grad cu exponent fracționar. Mai mult, următoarea egalitate este adevărată. n√(a m) = a (m/n) .

După cum știm deja, numerele de forma m/n, unde n este un număr natural și m este un număr întreg, se numesc numere fracționale sau raționale. Din cele de mai sus, obținem că gradul este definit, pentru orice exponent rațional și orice bază pozitivă a gradului.

Pentru orice numere raționale p,q și orice a>0 și b>0, următoarele egalități sunt adevărate:

  • 1. (a p)*(a q) = a (p+q)
  • 2. (a p): (b q) = a (p-q)
  • 3. (a p) q = a (p*q)
  • 4. (a*b) p = (a p)*(b p)
  • 5. (a/b) p = (a p)/(b p)

Aceste proprietăți sunt utilizate pe scară largă la conversia diferitelor expresii care conțin grade cu exponenți fracționari.

Exemple de transformări ale expresiilor care conțin un grad cu exponent fracționar

Să ne uităm la câteva exemple care demonstrează cum aceste proprietăți pot fi folosite pentru a transforma expresii.

1. Calculați 7 (1/4) * 7 (3/4) .

  • 7 (1/4) * 7 (3/4) = z (1/4 + 3/4) = 7.

2. Calculați 9 (2/3) : 9 (1/6) .

  • 9 (2/3) : 9 (1/6) = 9 (2/3 - 1/6) = 9 (1/2) = √9 = 3.

3. Calculați (16 (1/3)) (9/4) .

  • (16 (1/3)) (9/4) = 16 ((1/3)*(9/4)) =16 (3/4) = (2 4) (3/4) = 2 (4*3/4) = 2 3 = 8.

4. Calculați 24 (2/3) .

  • 24 (2/3) = ((2 3)*3) (2/3) = (2 (2*2/3))*3 (2/3) = 4*3√(3 2)=4*3√9.

5. Calculați (8/27) (1/3) .

  • (8/27) (1/3) = (8 (1/3))/(27 (1/3)) = ((2 3) (1/3))/((3 3) (1/3))= 2/3.

6. Simplificați expresia ((a (4/3))*b + a*b (4/3))/(3√a + 3√b)

  • ((a (4/3))*b + a*b (4/3))/(3√a + 3√b) = (a*b*(a (1/3) + b (1/3) )))/(1/3) + b (1/3)) = a*b.

7. Calculați (25 (1/5))*(125 (1/5)).

  • (25 (1/5))*(125 (1/5)) =(25*125) (1/5) = (5 5) (1/5) = 5.

8. Simplificați expresia

  • (a (1/3) - a (7/3))/(a (1/3) - a (4/3)) - (a (-1/3) - a (5/3))/( a(2/3) + a(-1/3)).
  • (a (1/3) - a (7/3))/(a (1/3) - a (4/3)) - (a (-1/3) - a (5/3))/( a(2/3) + a(-1/3)) =
  • = ((a (1/3))*(1-a 2))/((a (1/3))*(1-a)) - ((a (-1/3))*(1- a 2))/ ((a (-1/3))*(1+a)) =
  • = 1 + a - (1-a) = 2*a.

După cum puteți vedea, folosind aceste proprietăți, puteți simplifica foarte mult unele expresii care conțin grade cu exponenți fracționari.

Să luăm în considerare subiectul transformării expresiilor cu puteri, dar mai întâi ne vom opri asupra unui număr de transformări care pot fi efectuate cu orice expresii, inclusiv cu cele de putere. Vom învăța cum să deschidem paranteze, să dăm termeni similari, să lucrăm cu baza și cu exponentul, să folosim proprietățile puterilor.

Ce sunt expresiile de putere?

În cursul școlar, puțini oameni folosesc sintagma „expresii de putere”, dar acest termen se găsește constant în colecțiile de pregătire pentru examen. În cele mai multe cazuri, expresia denotă expresii care conțin grade în intrările lor. Aceasta este ceea ce vom reflecta în definiția noastră.

Definiția 1

Exprimarea puterii este o expresie care conține puteri.

Dăm câteva exemple de expresii de putere, începând cu un grad cu exponent natural și terminând cu un grad cu exponent real.

Cele mai simple expresii de putere pot fi considerate puteri ale unui număr cu exponent natural: 3 2 , 7 5 + 1 , (2 + 1) 5 , (− 0 , 1) 4 , 2 2 3 3 , 3 a 2 − a + a 2 , x 3 − 1 , (a 2) 3 . La fel și puteri cu exponent zero: 5 0 , (a + 1) 0 , 3 + 5 2 − 3 , 2 0 . Și puteri cu puteri întregi negative: (0 , 5) 2 + (0 , 5) - 2 2 .

Este puțin mai dificil să lucrezi cu un grad care are exponenți raționali și iraționali: 264 1 4 - 3 3 3 1 2 , 2 3 , 5 2 - 2 2 - 1 , 5 , 1 a 1 4 a 1 2 - 2 a - 1 6 · b 1 2 , x π · x 1 - π , 2 3 3 + 5 .

Indicatorul poate fi o variabilă 3 x - 54 - 7 3 x - 58 sau un logaritm x 2 l g x − 5 x l g x.

Ne-am ocupat de întrebarea ce sunt expresiile puterii. Acum să aruncăm o privire asupra transformării lor.

Principalele tipuri de transformări ale expresiilor puterii

În primul rând, vom lua în considerare transformările identitare de bază ale expresiilor care pot fi efectuate cu expresii de putere.

Exemplul 1

Calculați valoarea expresiei puterii 2 3 (4 2 − 12).

Soluţie

Vom efectua toate transformările în conformitate cu ordinea acțiunilor. În acest caz, vom începe prin a efectua acțiunile dintre paranteze: vom înlocui gradul cu o valoare digitală și vom calcula diferența dintre cele două numere. Avem 2 3 (4 2 − 12) = 2 3 (16 − 12) = 2 3 4.

Rămâne să înlocuim gradul 2 3 intelesul sau 8 și calculați produsul 8 4 = 32. Iată răspunsul nostru.

Răspuns: 2 3 (4 2 − 12) = 32 .

Exemplul 2

Simplificați expresia cu puteri 3 a 4 b − 7 − 1 + 2 a 4 b − 7.

Soluţie

Expresia dată nouă în starea problemei conține termeni similari, pe care îi putem aduce: 3 a 4 b − 7 − 1 + 2 a 4 b − 7 = 5 a 4 b − 7 − 1.

Răspuns: 3 a 4 b − 7 − 1 + 2 a 4 b − 7 = 5 a 4 b − 7 − 1 .

Exemplul 3

Exprimați o expresie cu puteri de 9 - b 3 · π - 1 2 ca produs.

Soluţie

Să reprezentăm numărul 9 ca putere 3 2 și aplicați formula de înmulțire prescurtată:

9 - b 3 π - 1 2 = 3 2 - b 3 π - 1 2 = = 3 - b 3 π - 1 3 + b 3 π - 1

Răspuns: 9 - b 3 π - 1 2 = 3 - b 3 π - 1 3 + b 3 π - 1 .

Și acum să trecem la analiza transformărilor identice care pot fi aplicate în mod specific expresiilor de putere.

Lucrul cu baza și exponent

Gradul în bază sau exponent poate avea numere, variabile și unele expresii. De exemplu, (2 + 0 , 3 7) 5 − 3 , 7Și . Este dificil să lucrezi cu astfel de înregistrări. Este mult mai ușor să înlocuiți expresia din baza gradului sau expresia din exponent cu o expresie identică egală.

Transformările gradului și ale indicatorului se realizează după regulile cunoscute de noi separat unul de celălalt. Cel mai important este că în urma transformărilor se obține o expresie identică cu cea originală.

Scopul transformărilor este de a simplifica expresia originală sau de a obține o soluție a problemei. De exemplu, în exemplul pe care l-am dat mai sus, (2 + 0 , 3 7) 5 − 3 , 7 puteți efectua operații pentru a ajunge la grad 4 , 1 1 , 3 . Deschizând parantezele, putem aduce termeni similari în baza gradului (a (a + 1) − a 2) 2 (x + 1)și obțineți o expresie a puterii într-o formă mai simplă a 2 (x + 1).

Utilizarea proprietăților puterii

Proprietățile grade, scrise ca egalități, sunt unul dintre principalele instrumente de transformare a expresiilor cu grade. Vă prezentăm aici pe cele principale, având în vedere că AȘi b sunt numere pozitive și rȘi s- numere reale arbitrare:

Definiția 2

  • a r a s = a r + s ;
  • a r: a s = a r − s ;
  • (a b) r = a r b r ;
  • (a: b) r = a r: b r ;
  • (a r) s = a r s .

În cazurile în care avem de-a face cu exponenți naturali, întregi, pozitivi, restricțiile asupra numerelor a și b pot fi mult mai puțin stricte. Deci, de exemplu, dacă luăm în considerare egalitatea a m a n = a m + n, Unde mȘi n sunt numere naturale, atunci va fi valabil pentru orice valori ale lui a, atât pozitive, cât și negative, precum și pentru a = 0.

Puteți aplica proprietățile gradelor fără restricții în cazurile în care bazele gradelor sunt pozitive sau conțin variabile al căror interval de valori acceptabile este astfel încât bazele să ia numai valori pozitive pe el. De fapt, în cadrul programului școlar de matematică, sarcina elevului este să aleagă proprietatea potrivită și să o aplice corect.

Atunci când vă pregătiți pentru admiterea la universități, pot exista sarcini în care aplicarea incorectă a proprietăților va duce la o îngustare a ODZ și la alte dificultăți cu soluția. În această secțiune, vom lua în considerare doar două astfel de cazuri. Mai multe informații despre subiect puteți găsi în subiectul „Transformarea expresiilor folosind proprietățile exponentului”.

Exemplul 4

Reprezentați expresia a 2 , 5 (a 2) - 3: a - 5 , 5 ca grad cu o bază A.

Soluţie

Pentru început, folosim proprietatea de exponențiere și transformăm al doilea factor folosindu-l (a 2) − 3. Apoi folosim proprietățile înmulțirii și împărțirii puterilor cu aceeași bază:

a 2 , 5 a − 6: a − 5 , 5 = a 2 , 5 − 6: a − 5 , 5 = a − 3 , 5: a − 5 , 5 = a − 3 , 5 − (− 5 , 5 ) = a 2 .

Răspuns: a 2 , 5 (a 2) − 3: a − 5 , 5 = a 2 .

Transformarea expresiilor puterii în funcție de proprietatea gradelor se poate face atât de la stânga la dreapta, cât și în sens invers.

Exemplul 5

Aflați valoarea expresiei puterii 3 1 3 · 7 1 3 · 21 2 3 .

Soluţie

Dacă aplicăm egalitatea (a b) r = a r b r, de la dreapta la stânga, atunci obținem un produs de forma 3 7 1 3 21 2 3 și apoi 21 1 3 21 2 3 . Să adăugăm exponenții atunci când înmulțim puteri cu aceleași baze: 21 1 3 21 2 3 \u003d 21 1 3 + 2 3 \u003d 21 1 \u003d 21.

Există o altă modalitate de a face transformări:

3 1 3 7 1 3 21 2 3 = 3 1 3 7 1 3 (3 7) 2 3 = 3 1 3 7 1 3 3 2 3 7 2 3 = = 3 1 3 3 2 3 7 1 3 7 2 3 = 3 1 3 + 2 3 7 1 3 + 2 3 = 3 1 7 1 = 21

Răspuns: 3 1 3 7 1 3 21 2 3 = 3 1 7 1 = 21

Exemplul 6

Dată o expresie de putere a 1 , 5 − a 0 , 5 − 6, introduceți o nouă variabilă t = a 0, 5.

Soluţie

Imaginează-ți gradul a 1, 5 Cum a 0, 5 3. Utilizarea proprietății grad într-un grad (a r) s = a r s de la dreapta la stânga și obțineți (a 0 , 5) 3: a 1 , 5 - a 0 , 5 - 6 = (a 0 , 5) 3 - a 0 , 5 - 6 . În expresia rezultată, puteți introduce cu ușurință o nouă variabilă t = a 0, 5: obține t 3 − t − 6.

Răspuns: t 3 − t − 6 .

Conversia fracțiilor care conțin puteri

De obicei avem de-a face cu două variante de expresii de putere cu fracții: expresia este o fracție cu un grad sau conține o astfel de fracție. Toate transformările de fracții de bază sunt aplicabile unor astfel de expresii fără restricții. Ele pot fi reduse, aduse la un nou numitor, pot lucra separat cu numărătorul și numitorul. Să ilustrăm acest lucru cu exemple.

Exemplul 7

Simplificați expresia puterii 3 5 2 3 5 1 3 - 5 - 2 3 1 + 2 x 2 - 3 - 3 x 2 .

Soluţie

Avem de-a face cu o fracție, așa că vom efectua transformări atât la numărător, cât și la numitor:

3 5 2 3 5 1 3 - 5 - 2 3 1 + 2 x 2 - 3 - 3 x 2 = 3 5 2 3 5 1 3 - 3 5 2 3 5 - 2 3 - 2 - x 2 = = 3 5 2 3 + 1 3 - 3 5 2 3 + - 2 3 - 2 - x 2 = 3 5 1 - 3 5 0 - 2 - x 2

Pune un minus în fața fracției pentru a schimba semnul numitorului: 12 - 2 - x 2 = - 12 2 + x 2

Răspuns: 3 5 2 3 5 1 3 - 5 - 2 3 1 + 2 x 2 - 3 - 3 x 2 = - 12 2 + x 2

Fracțiile care conțin puteri sunt reduse la un nou numitor în același mod ca și fracțiile raționale. Pentru a face acest lucru, trebuie să găsiți un factor suplimentar și să înmulțiți numărătorul și numitorul fracției cu acesta. Este necesar să selectați un factor suplimentar, astfel încât să nu dispară pentru nicio valoare a variabilelor din variabilele ODZ pentru expresia originală.

Exemplul 8

Aduceți fracțiile la un nou numitor: a) a + 1 a 0, 7 la numitor A, b) 1 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 la numitorul x + 8 y 1 2 .

Soluţie

a) Alegem un factor care ne va permite să reducem la un nou numitor. a 0 , 7 a 0 , 3 = a 0 , 7 + 0 , 3 = a , prin urmare, ca factor suplimentar, luăm a 0, 3. Gama de valori admisibile ale variabilei a include setul tuturor numerelor reale pozitive. În acest domeniu, gradul a 0, 3 nu merge la zero.

Să înmulțim numărătorul și numitorul unei fracții cu a 0, 3:

a + 1 a 0, 7 = a + 1 a 0, 3 a 0, 7 a 0, 3 = a + 1 a 0, 3 a

b) Acordați atenție numitorului:

x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 2 - x 1 3 2 y 1 6 + 2 y 1 6 2

Înmulțiți această expresie cu x 1 3 + 2 · y 1 6 , obținem suma cuburilor x 1 3 și 2 · y 1 6 , adică. x + 8 · y 1 2 . Acesta este noul nostru numitor, la care trebuie să aducem fracția originală.

Deci am găsit un factor suplimentar x 1 3 + 2 · y 1 6 . Pe intervalul de valori acceptabile ale variabilelor XȘi y expresia x 1 3 + 2 y 1 6 nu dispare, așa că putem înmulți numărătorul și numitorul fracției cu ea:
1 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 + 2 y 1 6 x 1 3 + 2 y 1 6 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 + 2 y 1 6 x 1 3 3 + 2 y 1 6 3 = x 1 3 + 2 y 1 6 x + 8 y 1 2

Răspuns: a) a + 1 a 0, 7 = a + 1 a 0, 3 a, b) 1 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = x 1 3 + 2 y 1 6 x + 8 y 1 2 .

Exemplul 9

Reduceți fracția: a) 30 x 3 (x 0, 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0, 5 + 1 2 x + 2 x 1 1 3 - 5 3, b) a 1 4 - b 1 4 a 1 2 - b 1 2.

Soluţie

a) Folosiți cel mai mare numitor comun (MCG) cu care numărătorul și numitorul pot fi reduse. Pentru numerele 30 și 45, acesta este 15. De asemenea, putem reduce x 0, 5 + 1 iar pe x + 2 x 1 1 3 - 5 3 .

Primim:

30 x 3 (x 0 , 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0 , 5 + 1 2 x + 2 x 1 1 3 - 5 3 = 2 x 3 3 (x 0 , 5 + 1)

b) Aici prezenţa unor factori identici nu este evidentă. Va trebui să efectuați câteva transformări pentru a obține aceiași factori la numărător și numitor. Pentru a face acest lucru, extindem numitorul folosind formula diferenței de pătrate:

a 1 4 - b 1 4 a 1 2 - b 1 2 = a 1 4 - b 1 4 a 1 4 2 - b 1 2 2 = = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 4 - b 1 4 = 1 a 1 4 + b 1 4

Răspuns: a) 30 x 3 (x 0, 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0, 5 + 1 2 x + 2 x 1 1 3 - 5 3 = 2 · x 3 3 · (x 0 , 5 + 1) , b) a 1 4 - b 1 4 a 1 2 - b 1 2 = 1 a 1 4 + b 1 4 .

Principalele operațiuni cu fracții includ reducerea la un nou numitor și reducerea fracțiilor. Ambele acțiuni sunt efectuate în conformitate cu o serie de reguli. La adunarea și scăderea fracțiilor, fracțiile sunt mai întâi reduse la un numitor comun, după care se efectuează acțiuni (adunare sau scădere) cu numărători. Numitorul rămâne același. Rezultatul acțiunilor noastre este o nouă fracție, al cărei numărător este produsul numărătorilor, iar numitorul este produsul numitorilor.

Exemplul 10

Efectuați pașii x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 · 1 x 1 2 .

Soluţie

Să începem prin a scădea fracțiile care sunt între paranteze. Să le aducem la un numitor comun:

x 1 2 - 1 x 1 2 + 1

Să scădem numărătorii:

x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = x 1 2 + 1 x 1 2 + 1 x 1 2 - 1 x 1 2 + 1 - x 1 2 - 1 x 1 2 - 1 x 1 2 + 1 x 1 2 - 1 1 x 1 2 = = x 1 2 + 1 2 - x 1 2 - 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = x 1 2 2 + 2 x 1 2 + 1 - x 1 2 2 - 2 x 1 2 + 1 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = 4 x 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2

Acum înmulțim fracțiile:

4 x 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = 4 x 1 2 x 1 2 - 1 x 1 2 + 1 x 1 2

Să reducem cu un grad x 1 2, obținem 4 x 1 2 - 1 x 1 2 + 1 .

În plus, puteți simplifica expresia puterii în numitor folosind formula pentru diferența de pătrate: pătrate: 4 x 1 2 - 1 x 1 2 + 1 = 4 x 1 2 2 - 1 2 = 4 x - 1.

Răspuns: x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 1 x 1 2 = 4 x - 1

Exemplul 11

Simplificați expresia puterii x 3 4 x 2 , 7 + 1 2 x - 5 8 x 2 , 7 + 1 3 .
Soluţie

Putem reduce fracția cu (x 2 , 7 + 1) 2. Obținem o fracție x 3 4 x - 5 8 x 2, 7 + 1.

Să continuăm transformările x puterilor x 3 4 x - 5 8 · 1 x 2 , 7 + 1 . Acum puteți utiliza proprietatea diviziunii puterii cu aceleași baze: x 3 4 x - 5 8 1 x 2, 7 + 1 = x 3 4 - - 5 8 1 x 2, 7 + 1 = x 1 1 8 1 x 2 , 7 + 1 .

Trecem de la ultimul produs la fracția x 1 3 8 x 2, 7 + 1.

Răspuns: x 3 4 x 2 , 7 + 1 2 x - 5 8 x 2 , 7 + 1 3 = x 1 3 8 x 2 , 7 + 1 .

În cele mai multe cazuri, este mai convenabil să transferați multiplicatori cu exponenți negativi de la numărător la numitor și invers prin schimbarea semnului exponentului. Această acțiune simplifică decizia ulterioară. Să dăm un exemplu: expresia puterii (x + 1) - 0 , 2 3 · x - 1 poate fi înlocuită cu x 3 · (x + 1) 0 , 2 .

Conversia expresiilor cu rădăcini și puteri

În sarcini, există expresii de putere care conțin nu numai grade cu exponenți fracționari, ci și rădăcini. Este de dorit să se reducă astfel de expresii doar la rădăcini sau doar la puteri. Trecerea la grade este de preferat, deoarece este mai ușor de lucrat cu acestea. O astfel de tranziție este deosebit de avantajoasă atunci când DPV-ul variabilelor pentru expresia originală vă permite să înlocuiți rădăcinile cu puteri fără a fi nevoie să accesați modulul sau să împărțiți DPV-ul în mai multe intervale.

Exemplul 12

Exprimați expresia x 1 9 x x 3 6 ca putere.

Soluţie

Interval valid al unei variabile X este determinată de două inegalități x ≥ 0şi x · x 3 ≥ 0 , care definesc mulţimea [ 0 , + ∞) .

Pe acest set, avem dreptul de a trece de la rădăcini la puteri:

x 1 9 x x 3 6 = x 1 9 x x 1 3 1 6

Folosind proprietățile gradelor, simplificăm expresia puterii rezultată.

x 1 9 x x 1 3 1 6 = x 1 9 x 1 6 x 1 3 1 6 = x 1 9 x 1 6 x 1 1 3 6 = = x 1 9 x 1 6 x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3

Răspuns: x 1 9 x x 3 6 = x 1 3 .

Conversia puterilor cu variabile în exponent

Aceste transformări sunt destul de simplu de făcut dacă utilizați corect proprietățile gradului. De exemplu, 5 2 x + 1 − 3 5 x 7 x − 14 7 2 x − 1 = 0.

Putem înlocui produsul gradului, în termenii căruia se găsește suma unei variabile și a unui număr. În partea stângă, acest lucru se poate face cu primul și ultimul termen din partea stângă a expresiei:

5 2 x 5 1 − 3 5 x 7 x − 14 7 2 x 7 − 1 = 0 , 5 5 2 x − 3 5 x 7 x − 2 7 2 x = 0 .

Acum să împărțim ambele părți ale ecuației cu 7 2 x. Această expresie pe ODZ a variabilei x ia numai valori pozitive:

5 5 - 3 5 x 7 x - 2 7 2 x 7 2 x = 0 7 2 x , 5 5 2 x 7 2 x - 3 5 x 7 x 7 2 x - 2 7 2 x 7 2 x = 0 , 5 5 2 x 7 2 x - 3 5 x 7 x 7 x 7 x - 2 7 2 x 7 2 x = 0

Să reducem fracțiile cu puteri, obținem: 5 5 2 x 7 2 x - 3 5 x 7 x - 2 = 0 .

În cele din urmă, raportul puterilor cu aceiași exponenți este înlocuit cu puteri ale rapoartelor, ceea ce duce la ecuația 5 5 7 2 x - 3 5 7 x - 2 = 0 , care este echivalent cu 5 5 7 x 2 - 3 5 7 x - 2 = 0 .

Să introducem o nouă variabilă t = 5 7 x , care reduce soluția ecuației exponențiale inițiale la soluția ecuației pătratice 5 · t 2 − 3 · t − 2 = 0 .

Conversia expresiilor cu puteri și logaritmi

În probleme se găsesc și expresii care conțin puteri și logaritmi. Exemple de astfel de expresii sunt: ​​1 4 1 - 5 log 2 3 sau log 3 27 9 + 5 (1 - log 3 5) log 5 3 . Transformarea unor astfel de expresii se realizează folosind abordările discutate mai sus și proprietățile logaritmilor, pe care le-am analizat în detaliu în subiectul „Transformarea expresiilor logaritmice”.

Dacă observați o greșeală în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Expresii, conversie de expresii

Expresii de putere (expresii cu puteri) și transformarea lor

În acest articol, vom vorbi despre transformarea expresiilor cu puteri. În primul rând, ne vom concentra asupra transformărilor care sunt efectuate cu expresii de orice fel, inclusiv expresii de putere, cum ar fi parantezele de deschidere, reducând termeni similari. Și apoi vom analiza transformările inerente în mod specific expresiilor cu grade: lucrul cu baza și exponentul, utilizarea proprietăților gradelor etc.

Navigare în pagină.

Ce sunt expresiile de putere?

Termenul „expresii de putere” nu se găsește practic în manualele școlare de matematică, dar apare adesea în colecții de probleme, special concepute pentru a pregăti examenul de stat unificat și OGE, de exemplu. După analizarea sarcinilor în care este necesară efectuarea oricăror acțiuni cu expresii de putere, devine clar că expresiile de putere sunt înțelese ca expresii care conțin grade în intrările lor. Prin urmare, pentru tine, poți lua următoarea definiție:

Definiție.

Expresii de putere sunt expresii care conțin puteri.

Să aducem exemple de expresii de putere. Mai mult, le vom reprezenta în funcție de modul în care se desfășoară dezvoltarea opiniilor asupra de la un grad cu indicator natural la un grad cu un indicator real.

După cum știți, mai întâi vă familiarizați cu gradul unui număr cu exponent natural, în acest stadiu primele expresii de putere cele mai simple de tip 3 2 , 7 5 +1 , (2+1) 5 , (−0,1 ) 4 , 3 a 2 −a+a 2 , x 3−1 , (a 2) 3 etc.

Puțin mai târziu, se studiază puterea unui număr cu exponent întreg, ceea ce duce la apariția expresiilor de putere cu puteri întregi negative, precum următoarele: 3 −2, , a −2 +2 b −3 + c 2 .

La clasele superioare se întorc din nou la grade. Acolo, se introduce un grad cu un exponent rațional, ceea ce duce la apariția expresiilor de putere corespunzătoare: , , și așa mai departe. În sfârșit, se consideră grade cu exponenți iraționali și expresii care îi conțin: , .

Problema nu se limitează la expresiile de putere enumerate: mai departe variabila pătrunde în exponent și există, de exemplu, astfel de expresii 2 x 2 +1 sau . Și după ce ne-am familiarizat cu, încep să apară expresii cu puteri și logaritmi, de exemplu, x 2 lgx −5 x lgx.

Deci, ne-am dat seama ce sunt expresiile puterii. În continuare, vom învăța cum să le transformăm.

Principalele tipuri de transformări ale expresiilor puterii

Cu expresii de putere, puteți efectua oricare dintre elementele de bază transformări identice ale expresiilor. De exemplu, puteți deschide paranteze, puteți înlocui expresiile numerice cu valorile lor, puteți adăuga termeni similari și așa mai departe. Desigur, în acest caz este necesar să se respecte cele acceptate ordinea acțiunilor. Să dăm exemple.

Exemplu.

Calculați valoarea expresiei puterii 2 3 ·(4 2 −12) .

Soluţie.

După ordinea acțiunilor, mai întâi efectuăm acțiunile dintre paranteze. Acolo, în primul rând, înlocuim puterea lui 4 2 cu valoarea sa 16 (vezi dacă este necesar), iar în al doilea rând, calculăm diferența 16−12=4 . Avem 2 3 (4 2 −12)=2 3 (16−12)=2 3 4.

În expresia rezultată, înlocuim puterea lui 2 3 cu valoarea ei 8 , după care calculăm produsul 8·4=32 . Aceasta este valoarea dorită.

Asa de, 2 3 (4 2 −12)=2 3 (16−12)=2 3 4=8 4=32.

Răspuns:

2 3 (4 2 −12)=32 .

Exemplu.

Simplificați expresiile puterii 3 a 4 b −7 −1+2 a 4 b −7.

Soluţie.

Evident, această expresie conține termeni asemănători 3 a 4 b −7 și 2 a 4 b −7 , și le putem reduce: .

Răspuns:

3 a 4 b −7 −1+2 a 4 b −7 =5 a 4 b −7 −1.

Exemplu.

Exprimați o expresie cu puteri ca produs.

Soluţie.

Pentru a face față sarcinii permite reprezentarea numărului 9 ca o putere a 3 2 și utilizarea ulterioară formule de înmulțire prescurtate diferenta de patrate:

Răspuns:

Există, de asemenea, o serie de transformări identice inerente expresiilor puterii. În continuare, le vom analiza.

Lucrul cu baza și exponent

Există grade, în baza și/sau indicatorul cărora nu sunt doar numere sau variabile, ci câteva expresii. Ca exemplu, să scriem (2+0.3 7) 5−3.7 și (a (a+1)−a 2) 2 (x+1) .

Când lucrați cu expresii similare, atât expresia din baza gradului, cât și expresia din exponent pot fi înlocuite cu o expresie identică egală pe ODZ variabilele lui. Cu alte cuvinte, conform regulilor cunoscute de noi, putem converti separat baza gradului și separat - indicatorul. Este clar că în urma acestei transformări se obține o expresie identic egală cu cea inițială.

Astfel de transformări ne permit să simplificăm expresiile cu puteri sau să atingem alte scopuri de care avem nevoie. De exemplu, în expresia puterii (2+0,3 7) 5−3,7 menționată mai sus, puteți efectua operații cu numere în bază și exponent, ceea ce vă va permite să mergeți la puterea lui 4,1 1,3. Și după ce deschidem parantezele și aducem termeni similari în baza gradului (a·(a+1)−a 2) 2·(x+1) obținem o expresie a puterii de o formă mai simplă a 2·(x+1). ).

Utilizarea proprietăților puterii

Unul dintre instrumentele principale pentru transformarea expresiilor cu puteri sunt egalitățile care reflectă . Să le amintim pe cele principale. Pentru orice numere pozitive a și b și numere reale arbitrare r și s, sunt valabile următoarele proprietăți de putere:

  • a r a s =a r+s ;
  • a r:a s =a r−s ;
  • (a b) r = a r b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r s .

Rețineți că pentru exponenții naturali, întregi și pozitivi, restricțiile asupra numerelor a și b pot să nu fie atât de stricte. De exemplu, pentru numerele naturale m și n, egalitatea a m ·a n =a m+n este adevărată nu numai pentru a pozitiv, ci și pentru cele negative și pentru a=0 .

La școală, atenția principală în transformarea expresiilor puterii este concentrată tocmai pe capacitatea de a alege proprietatea potrivită și de a o aplica corect. În acest caz, bazele gradelor sunt de obicei pozitive, ceea ce vă permite să utilizați proprietățile gradelor fără restricții. Același lucru este valabil și pentru transformarea expresiilor care conțin variabile în bazele de grade - gama de valori acceptabile ale variabilelor este de obicei astfel încât bazele iau numai valori pozitive pe el, ceea ce vă permite să utilizați liber proprietățile de grade. În general, trebuie să vă întrebați în mod constant dacă este posibil să aplicați vreo proprietate a gradelor în acest caz, deoarece utilizarea incorectă a proprietăților poate duce la o îngustare a DPV și la alte probleme. Aceste puncte sunt discutate în detaliu și cu exemple în articol. transformarea expresiilor folosind proprietăţile puterilor. Aici ne limităm la câteva exemple simple.

Exemplu.

Exprimați expresia a 2,5 ·(a 2) −3:a −5,5 ca o putere cu baza a .

Soluţie.

Mai întâi, transformăm cel de-al doilea factor (a 2) −3 prin proprietatea de a ridica o putere la o putere: (a 2) −3 =a 2 (−3) =a −6. În acest caz, expresia puterii inițiale va lua forma a 2.5 ·a −6:a −5.5 . Evident, rămâne să folosim proprietățile înmulțirii și împărțirii puterilor cu aceeași bază, avem
a 2,5 a -6:a -5,5 =
a 2,5−6:a−5,5 =a−3,5:a−5,5 =
a −3,5−(−5,5) =a 2 .

Răspuns:

a 2,5 (a 2) -3: a -5,5 \u003d a 2.

Proprietățile puterii sunt folosite atunci când se transformă expresiile de putere atât de la stânga la dreapta, cât și de la dreapta la stânga.

Exemplu.

Găsiți valoarea expresiei puterii.

Soluţie.

Egalitatea (a·b) r =a r ·b r , aplicată de la dreapta la stânga, vă permite să treceți de la expresia originală la produsul formei și mai departe. Și atunci când înmulțiți puteri cu aceeași bază, indicatorii se adună: .

A fost posibil să se efectueze transformarea expresiei originale într-un alt mod:

Răspuns:

.

Exemplu.

Având în vedere o expresie de putere a 1,5 −a 0,5 −6 , introduceți o nouă variabilă t=a 0,5 .

Soluţie.

Gradul a 1,5 poate fi reprezentat ca un 0,5 3 și mai departe pe baza proprietății gradului în gradul (a r) s =a r s aplicat de la dreapta la stânga, se transformă în forma (a 0,5) 3 . Prin urmare, a 1,5 -a 0,5 -6=(a 0,5) 3 -a 0,5 -6. Acum este ușor să introducem o nouă variabilă t=a 0.5 , obținem t 3 −t−6 .

Răspuns:

t 3 −t−6 .

Conversia fracțiilor care conțin puteri

Expresiile de putere pot conține fracții cu puteri sau pot reprezenta astfel de fracții. La astfel de fracții, oricare dintre principalele conversii de fracții, care sunt inerente fracțiilor de orice fel. Adică, fracțiile care conțin grade pot fi reduse, reduse la un nou numitor, se pot lucra separat cu numărătorul lor și separat cu numitorul etc. Pentru a ilustra cuvintele de mai sus, luați în considerare soluțiile mai multor exemple.

Exemplu.

Simplificați expresia puterii .

Soluţie.

Această expresie a puterii este o fracție. Să lucrăm cu numărătorul și numitorul. La numărător, deschidem parantezele și simplificăm expresia obținută după aceea folosind proprietățile puterilor, iar la numitor prezentăm termeni similari:

Și schimbăm și semnul numitorului punând un minus în fața fracției: .

Răspuns:

.

Reducerea fracțiilor care conțin puteri la un nou numitor se realizează în mod similar cu reducerea fracțiilor raționale la un nou numitor. În același timp, se găsește și un factor suplimentar și se înmulțesc numărătorul și numitorul fracției cu acesta. La efectuarea acestei acțiuni, merită să ne amintim că reducerea la un nou numitor poate duce la o îngustare a DPV. Pentru a preveni acest lucru, este necesar ca factorul suplimentar să nu dispară pentru nicio valoare a variabilelor din variabilele ODZ pentru expresia originală.

Exemplu.

Aduceți fracțiile la un nou numitor: a) la numitorul a, b) la numitor.

Soluţie.

a) În acest caz, este destul de ușor să ne dăm seama ce factor suplimentar ajută la obținerea rezultatului dorit. Acesta este un factor a 0,3 deoarece a 0,7 a 0,3 = a 0,7+0,3 = a . Rețineți că în intervalul de valori acceptabile ale variabilei a (aceasta este mulțimea tuturor numerelor reale pozitive), gradul a 0,3 nu dispare, prin urmare, avem dreptul de a înmulți numărătorul și numitorul fracției date. prin acest factor suplimentar:

b) Privind mai atent la numitor, constatăm că

iar înmulțirea acestei expresii cu va da suma cuburilor și , adică . Și acesta este noul numitor la care trebuie să aducem fracția originală.

Așa că am găsit un factor suplimentar. Expresia nu dispare în intervalul de valori acceptabile ale variabilelor x și y, prin urmare, putem înmulți numărătorul și numitorul fracției cu acesta:

Răspuns:

A) , b) .

De asemenea, nu este nimic nou în reducerea fracțiilor care conțin grade: numărătorul și numitorul sunt reprezentați ca un anumit număr de factori, iar aceiași factori ai numărătorului și numitorului sunt reduse.

Exemplu.

Reduceți fracția: a) , b).

Soluţie.

a) În primul rând, numărătorul și numitorul pot fi reduse cu numerele 30 și 45, care este egal cu 15. De asemenea, evident, puteți reduce cu x 0,5 +1 și cu . Iată ce avem:

b) În acest caz, aceiași factori din numărător și numitor nu sunt vizibili imediat. Pentru a le obține, trebuie să efectuați transformări preliminare. În acest caz, ele constau în descompunerea numitorului în factori conform formulei diferenței de pătrate:

Răspuns:

A)

b) .

Reducerea fracțiilor la un nou numitor și reducerea fracțiilor sunt utilizate în principal pentru a efectua operații pe fracții. Acțiunile sunt efectuate conform regulilor cunoscute. La adunarea (scăderea) fracțiilor, acestea sunt reduse la un numitor comun, după care se adună (se scad) numărătorii, iar numitorul rămâne același. Rezultatul este o fracție al cărei numărător este produsul numărătorilor, iar numitorul este produsul numitorilor. Împărțirea cu o fracție este înmulțirea cu reciproca ei.

Exemplu.

Urmareste pasii .

Soluţie.

În primul rând, scădem fracțiile dintre paranteze. Pentru a face acest lucru, îi aducem la un numitor comun, care este , apoi scădeți numărătorii:

Acum înmulțim fracțiile:

Evident, este posibilă o reducere cu puterea x 1/2, după care avem .

De asemenea, puteți simplifica expresia puterii în numitor folosind formula diferenței de pătrate: .

Răspuns:

Exemplu.

Simplificați expresia puterii .

Soluţie.

Evident, această fracție poate fi redusă cu (x 2,7 +1) 2, aceasta dă fracția . Este clar că trebuie făcut altceva cu puterile lui x. Pentru a face acest lucru, convertim fracția rezultată într-un produs. Acest lucru ne oferă posibilitatea de a folosi proprietatea de a împărți puterile cu aceleași baze: . Și la sfârșitul procesului, trecem de la ultimul produs la fracțiune.

Răspuns:

.

Și adăugăm că este posibil și în multe cazuri de dorit să se transfere factori cu exponenți negativi de la numărător la numitor sau de la numitor la numărător prin schimbarea semnului exponentului. Astfel de transformări simplifică adesea acțiunile ulterioare. De exemplu, o expresie de putere poate fi înlocuită cu .

Conversia expresiilor cu rădăcini și puteri

Adesea în expresiile în care sunt necesare unele transformări, alături de grade cu exponenți fracționari, există și rădăcini. Pentru a converti o astfel de expresie în forma dorită, în cele mai multe cazuri este suficient să mergeți doar la rădăcini sau doar la puteri. Dar, deoarece este mai convenabil să lucrezi cu grade, de obicei se mută de la rădăcini la grade. Cu toate acestea, este recomandabil să efectuați o astfel de tranziție atunci când ODZ de variabile pentru expresia originală vă permite să înlocuiți rădăcinile cu grade fără a fi nevoie să accesați modulul sau să împărțiți ODZ-ul în mai multe intervale (am discutat acest lucru în detaliu în articol, trecerea de la rădăcini la puteri și invers După ce se familiarizează cu gradul cu un exponent rațional, se introduce un grad cu un indicator irațional, ceea ce face posibil să se vorbească despre un grad cu un indicator real arbitrar. În această etapă, scoala incepe sa studieze functie exponentiala, care este dat analitic de grad, în baza căruia există un număr, iar în indicator - o variabilă. Așadar, ne confruntăm cu expresii de putere care conțin numere în baza gradului, iar în exponent - expresii cu variabile și, firește, apare nevoia de a efectua transformări ale unor astfel de expresii.

Trebuie spus că transformarea expresiilor de tipul indicat trebuie de obicei efectuată la rezolvare ecuații exponențialeȘi inegalități exponențiale, iar aceste transformări sunt destul de simple. În marea majoritate a cazurilor, acestea se bazează pe proprietățile gradului și vizează mai ales introducerea unei noi variabile în viitor. Ecuația ne va permite să le demonstrăm 5 2 x+1 −3 5 x 7 x −14 7 2 x−1 =0.

În primul rând, exponenții, în ai căror exponenți se găsește suma unei variabile (sau expresii cu variabile) și a unui număr, sunt înlocuiți cu produse. Acest lucru se aplică primului și ultimului termeni ai expresiei din partea stângă:
5 2 x 5 1 −3 5 x 7 x −14 7 2 x 7 −1 =0,
5 5 2 x −3 5 x 7 x −2 7 2 x =0.

În continuare, ambele părți ale egalității sunt împărțite prin expresia 7 2 x , care ia doar valori pozitive pe variabila ODZ x pentru ecuația originală (aceasta este o tehnică standard pentru rezolvarea ecuațiilor de acest fel, nu vorbim despre acum, așa că concentrează-te pe transformările ulterioare ale expresiilor cu puteri ):

Acum fracțiile cu puteri sunt anulate, ceea ce dă .

În cele din urmă, raportul puterilor cu aceiași exponenți este înlocuit cu puteri ale rapoartelor, ceea ce duce la ecuația , care este echivalent cu . Transformările efectuate ne permit să introducem o nouă variabilă, care reduce soluția ecuației exponențiale inițiale la soluția ecuației pătratice

  • I. V. Boikov, L. D. Romanova Culegere de sarcini pentru pregătirea pentru examen. Partea 1. Penza 2003.

  • închide