0, 30, 45, 60, 90, ... derecelik açılar için temel trigonometrik fonksiyonlar tablosu

$\sin$, $\cos$, $\tan$ ve $\cot$ fonksiyonlarının trigonometrik tanımlarından, $0$ ve $90$ derece açıları için değerlerini bulabilirsiniz:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ tanımlanmadı;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ tanımlı değil.

Bir okul geometri dersinde dik üçgenler incelenirken $0°$, $30°$, $45°$, $60°$ ve $90°$ açılarının trigonometrik fonksiyonları bulunur.

Belirtilen açılar için sırasıyla derece ve radyan cinsinden trigonometrik fonksiyonların değerleri bulundu ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\ ezberleme ve kullanım kolaylığı için pi)(3) $, $\frac(\pi)(2)$) adlı bir tabloya girilir. trigonometrik tablo, trigonometrik fonksiyonların temel değerleri tablosu ve benzeri.

İndirgeme formülleri kullanıldığında, trigonometrik tablo 360$°$'lık bir açıya ve buna göre $2\pi$ radyana kadar genişletilebilir:

Trigonometrik fonksiyonların periyodiklik özelliklerini kullanarak, bilinenden 360°$ kadar farklı olacak her açı hesaplanıp bir tabloya kaydedilebilir. Örneğin, $0°$ açısı için trigonometrik fonksiyon, $0°+360°$ açısı için, $0°+2 \cdot 360°$ açısı için ve $0°+3 \cdot 360°$ açısı için aynı değere sahip olacaktır. ve benzeri.

Trigonometrik bir tablo kullanarak birim çemberin tüm açılarının değerlerini belirleyebilirsiniz.

Bir okul geometri dersinde, trigonometrik problemleri çözme kolaylığı için trigonometrik bir tabloda toplanan trigonometrik fonksiyonların temel değerlerini ezberlemeniz beklenir.

Bir tablo kullanma

Tabloda gerekli trigonometrik fonksiyonu ve bu fonksiyonun hesaplanması gereken açı veya radyan değerini bulmanız yeterlidir. Satırın fonksiyonla ve sütunun değerle kesiştiği noktada, verilen argümanın trigonometrik fonksiyonunun istenen değerini elde ederiz.

Şekilde $\frac(1)(2)$'a eşit olan $\cos⁡60°$ değerini nasıl bulacağınızı görebilirsiniz.

Genişletilmiş trigonometrik tablo aynı şekilde kullanılır. Bunu kullanmanın avantajı, daha önce de belirtildiği gibi, hemen hemen her açının trigonometrik fonksiyonunun hesaplanmasıdır. Örneğin, $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300 değerini kolayca bulabilirsiniz. °$:

Temel trigonometrik fonksiyonların Bradis tabloları

Derece tamsayı değeri ve dakika tamsayı değeri için kesinlikle herhangi bir açı değerinin trigonometrik fonksiyonunu hesaplama yeteneği Bradis tablolarının kullanılmasıyla sağlanır. Örneğin, $\cos⁡34°7"$ değerini bulun. Tablolar 2 bölüme ayrılmıştır: $\sin$ ve $\cos$ değerleri tablosu ve $ değerleri tablosu \tan$ ve $\cot$.

Bradis tabloları, trigonometrik fonksiyonların yaklaşık değerlerini 4 ondalık basamağa kadar doğrulukla elde etmeyi mümkün kılar.

Bradis tablolarını kullanma

Sinüsler için Bradis tablolarını kullanarak $\sin⁡17°42"$'ı buluruz. Bunu yapmak için sinüs ve kosinüs tablosunun sol sütununda derece değerini - $17°$ ve üst satırda buluruz. dakikaların değerini buluyoruz - $42"$. Kesişmelerinde istenen değeri elde ederiz:

$\sin17°42"=0,304$.

$\sin17°44"$ değerini bulmak için tablonun sağ tarafındaki düzeltmeyi kullanmanız gerekir. Bu durumda tablodaki $42"$ değerine $2 düzeltmesini eklemeniz gerekir. "$, bu da $0,0006$'a eşittir. Şunu elde ederiz:

$\sin17°44"=0,304+0,0006=0,3046$.

$\sin17°47"$ değerini bulmak için tablonun sağ tarafındaki düzeltmeyi de kullanırız, ancak bu durumda $\sin17°48"$ değerini temel alır ve $1"$ düzeltmesini çıkarırız :

$\sin17°47"=0,3057-0,0003=0,3054$.

Kosinüsleri hesaplarken de benzer işlemler yapıyoruz ancak tablonun sağ sütununda derecelere, alt sütununda ise dakikalara bakıyoruz. Örneğin, $\cos20°=0,9397$.

$90°$'a kadar olan teğet değerler ve küçük açı kotanjantları için herhangi bir düzeltme yoktur. Örneğin, tabloya göre $4.967$'a eşit olan $\tan 78°37"$'ı bulalım.

Sinüs (sin), kosinüs (cos), teğet (tg), kotanjant (ctg) değer tabloları, hem teorik hem de uygulamalı birçok problemi çözmeye yardımcı olan güçlü ve kullanışlı bir araçtır. Bu makalede 0, 30, 45, 60, 90, ..., 360 derecelik (0, π 6, π 3, π) açılar için temel trigonometrik fonksiyonların (sinüsler, kosinüsler, teğetler ve kotanjantlar) tablosunu sunacağız 2,... , 2 π radyan). Sinüsler ve kosinüsler, teğetler ve kotanjantlar için ayrı Bradis tabloları da gösterilecek ve bunların temel trigonometrik fonksiyonların değerlerini bulmak için nasıl kullanılacağı açıklanacak.

0, 30, 45, 60, 90, ..., 360 derece açılar için temel trigonometrik fonksiyonlar tablosu

Sinüs, kosinüs, tanjant ve kotanjant tanımlarından yola çıkarak bu fonksiyonların 0 ve 90 derecelik açılar için değerlerini bulabilirsiniz.

sin 0 = 0, cos 0 = 1, tg 0 = 0, sıfır kotanjant tanımlı değil,

sin 90° = 1, cos 90° = 0, c t g 90° = 0, doksan derecenin tanjantı tanımlanmamıştır.

Geometri dersinde sinüs, kosinüs, teğet ve kotanjant değerleri, açıları 30, 60 ve 90 derece ve ayrıca 45, 45 ve 90 derece olan bir dik üçgenin kenarlarının oranı olarak tanımlanır.

Dik üçgende dar açı için trigonometrik fonksiyonları tanımlama

Sinüs- karşı tarafın hipotenüse oranı.

Kosinüs- bitişik bacağın hipotenüse oranı.

Teğet- karşı tarafın bitişik tarafa oranı.

Kotanjant- Bitişik tarafın karşı tarafa oranı.

Tanımlara uygun olarak fonksiyonların değerleri bulunur:

sin 30 ° = 1 2 , çünkü 30 ° = 3 2 , tg 30 ° = 3 3 , c tg 30 ° = 3 , sin 45 ° = 2 2 , çünkü 45 ° = 2 2 , tg 45 ° = 1 , c tg 45 ° = 1, sin 60° = 3 2, cos 45° = 1 2, tg 45° = 3, c tg 45° = 3 3.

Bu değerleri bir tabloya koyalım ve buna sinüs, kosinüs, tanjant ve kotanjantın temel değerlerinin tablosu diyelim.

Sinüs, kosinüs, teğet ve kotanjantların temel değerleri tablosu

α ° 0 30 45 60 90
günah α 0 1 2 2 2 3 2 1
çünkü α 1 3 2 2 2 1 2 0
tgα 0 3 3 1 3 tanımsız
c t g α tanımsız 3 1 3 3 0
α, r a d i a n 0 π 6 π4 π3 π2

Trigonometrik fonksiyonların önemli özelliklerinden biri periyodikliktir. Bu özelliğe dayanarak bu tablo indirgeme formülleri kullanılarak genişletilebilir. Aşağıda 0, 30, 60, ... , 120, 135, 150, 180, ... , 360 derece (0, π 6, π 3) açıları için ana trigonometrik fonksiyonların değerlerinin genişletilmiş bir tablosunu sunuyoruz. , π 2, ... , 2 π radyan).

Sinüs, kosinüs, teğet ve kotanjant tablosu

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
günah α 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
çünkü α 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
tgα 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g α - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α, r a d i a n 0 π 6 π4 π3 π2 2 π 3 3 π 4 5 π 6 π 7 π 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 π 6

Sinüs, kosinüs, tanjant ve kotanjantın periyodikliği, bu tabloyu isteğe bağlı olarak büyük açı değerlerine genişletmenize olanak tanır. Tabloda toplanan değerler en çok problem çözerken kullanılır, bu nedenle bunların ezberlenmesi önerilir.

Trigonometrik fonksiyonların temel değerleri tablosu nasıl kullanılır?

Sinüsler, kosinüsler, teğetler ve kotanjantların değer tablosunu kullanma ilkesi sezgisel düzeyde açıktır. Bir satır ile bir sütunun kesişimi, belirli bir açı için fonksiyonun değerini verir.

Örnek. Sinüs, kosinüs, teğet ve kotanjant tablosu nasıl kullanılır?

Sin 7 π 6'nın neye eşit olduğunu bulmamız gerekiyor

Tabloda son hücre değeri 7 π 6 radyan, yani 210 derece olan bir sütun buluyoruz. Daha sonra sinüs değerlerinin sunulduğu tablonun terimini seçiyoruz. Satır ve sütunun kesişiminde istenen değeri buluruz:

günah 7 π 6 = - 1 2

Bradis masaları

Bradis tablosu sinüs, kosinüs, tanjant veya kotanjant değerini bilgisayar teknolojisi kullanmadan 4 ondalık basamak hassasiyetiyle hesaplamanıza olanak tanır. Bu bir tür mühendislik hesap makinesinin yerine geçer.

Referans

Vladimir Modestovich Bradis (1890 - 1975) - Sovyet matematikçi-öğretmen, 1954'ten beri SSCB Pedagoji Bilimleri Akademisi'nin ilgili üyesi. Bradis tarafından geliştirilen dört basamaklı logaritma ve doğal trigonometrik büyüklük tabloları ilk olarak 1921'de yayınlandı.

Öncelikle sinüs ve kosinüsler için Bradis tablosunu sunuyoruz. Tamsayı derece ve dakika içeren açılar için bu fonksiyonların yaklaşık değerlerini oldukça doğru bir şekilde hesaplamanıza olanak tanır. Tablonun en soldaki sütunu dereceleri, üst satırı ise dakikaları temsil eder. Bradis tablosunun tüm açı değerlerinin altı dakikanın katları olduğuna dikkat edin.

Sinüs ve kosinüsler için Bradis tablosu

günah 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" çünkü 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
günah 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" çünkü 1" 2" 3"

Tabloda gösterilmeyen açıların sinüs ve kosinüs değerlerini bulmak için düzeltmelerin kullanılması gerekir.

Şimdi teğetler ve kotanjantlar için Bradis tablosunu sunuyoruz. 0 ila 76 derece arasındaki açıların teğet değerlerini ve 14 ila 90 derece arasındaki açıların kotanjantlarını içerir.

Teğet ve kotanjant için Bradis tablosu

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

Bradis tabloları nasıl kullanılır?

Sinüsler ve kosinüsler için Bradis tablosunu düşünün. Sinüslerle ilgili her şey üstte ve soldadır. Kosinüslere ihtiyacımız varsa tablonun alt sağ tarafına bakın.

Bir açının sinüs değerlerini bulmak için, en soldaki hücrede gerekli derece sayısını içeren satır ile üst hücrede gerekli dakika sayısını içeren sütunun kesişimini bulmanız gerekir.

Tam açı değeri Bradis tablosunda yoksa düzeltmelere başvuruyoruz. Tablonun en sağ sütunlarında bir, iki ve üç dakikalık düzeltmeler verilmiştir. Tabloda olmayan bir açının sinüs değerini bulmak için ona en yakın değeri buluruz. Bundan sonra açılar arasındaki farka karşılık gelen düzeltmeyi ekler veya çıkarırız.

90 dereceden büyük bir açının sinüsünü arıyorsak, önce indirgeme formüllerini, sonra da Bradis tablosunu kullanmamız gerekir.

Örnek. Bradis tablosu nasıl kullanılır?

Diyelim ki 17 ° 44" açısının sinüsünü bulmamız gerekiyor. Tabloyu kullanarak 17 ° 42 " sinüsünün neye eşit olduğunu buluyoruz ve değerine iki dakikalık bir düzeltme ekliyoruz:

17°44" - 17°42" = 2" (gerekli düzeltme) sin 17°44" = 0. 3040 + 0 . 0006 = 0 . 3046

Kosinüsler, teğetler ve kotanjantlarla çalışma prensibi benzerdir. Ancak değişikliklerin işaretini hatırlamak önemlidir.

Önemli!

Sinüslerin değerlerini hesaplarken düzeltmenin pozitif bir işareti vardır ve kosinüsleri hesaplarken düzeltmenin negatif bir işaretle alınması gerekir.

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.

Makalede neye benzediğini tam olarak anlayacağız trigonometrik değerler tablosu, sinüs, kosinüs, tanjant ve kotanjant. Trigonometrik fonksiyonların temel anlamını 0,30,45,60,90,...,360 derecelik açılardan ele alalım. Ve trigonometrik fonksiyonların değerlerinin hesaplanmasında bu tabloların nasıl kullanılacağını görelim.
İlk önce şuna bakalım kosinüs, sinüs, tanjant ve kotanjant tablosu 0, 30, 45, 60, 90,... derecelik bir açıdan. Bu büyüklüklerin tanımı, 0 ve 90 derecelik açıların fonksiyonlarının değerini belirlememizi sağlar:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, 0 0'dan kotanjant tanımsız olacaktır
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0, 90 0'dan teğet belirsiz olacaktır

Açıları 30 ile 90 derece arasında olan dik üçgenleri alırsanız. Şunu elde ederiz:

günah 30 0 = 1/2, cos 30 0 = √3/2, tan 30 0 = √3/3, cos 30 0 = √3
günah 45 0 = √2/2, cos 45 0 = √2/2, tan 45 0 = 1, cos 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3, bebek karyolası 60 0 = √3/3

Elde edilen tüm değerleri formda temsil edelim trigonometrik tablo:

Sinüs, kosinüs, teğet ve kotanjant tablosu!

İndirgeme formülünü kullanırsak tablomuz artacak ve 360 ​​dereceye kadar olan açılar için değerler eklenecektir. Şöyle görünecek:

Ayrıca periyodiklik özelliklerine bağlı olarak açıları 0 0 +360 0 *z .... 330 0 +360 0 *z ile değiştirirsek tablo büyütülebilir; burada z bir tam sayıdır. Bu tabloda tek bir çemberdeki noktalara karşılık gelen tüm açıların değerini hesaplamak mümkündür.

Tablonun bir çözümde nasıl kullanılacağına bakalım.
Her şey çok basit. Çünkü ihtiyacımız olan değer, ihtiyacımız olan hücrelerin kesişme noktasında yatıyor. Örneğin, 60 derecelik bir açının cos değerini alın, tabloda şöyle görünecektir:

Trigonometrik fonksiyonların ana değerlerinin son tablosunda da aynı şekilde ilerliyoruz. Ancak bu tabloda 1020 derecelik açıdan tanjantın ne kadar olduğunu bulmak mümkün, = -√3 1020 0 = 300 0 +360 0 *2'yi kontrol edelim. Tabloyu kullanarak bulalım.

Daha fazla arama için dakika hassasiyetinde trigonometrik açı değerleri kullanılır. Bunların nasıl kullanılacağına ilişkin ayrıntılı talimatlar sayfada yer almaktadır.

Bradi'nin masası. Sinüs, kosinüs, teğet ve kotanjant için.

Bradis tabloları, kosinüs ve sinüs, teğet ve kotanjant tablolarından oluşan birkaç parçaya bölünmüştür - bunlar iki parçaya bölünmüştür (90 dereceye kadar açıların tg'si ve küçük açıların ctg'si).

Sinüs ve kosinüs

0 0'dan başlayıp 76 0 ile biten açının tg'si, 14 0'dan başlayıp 90 0 ile biten açının ctg'si.

90 0'a kadar tg ve küçük açılardan ctg.

Bradis tablolarını problem çözmede nasıl kullanabileceğimizi bulalım.

Tanımlama günahını (sol kenardaki sütunda tanımlama) 42 dakika (atama üst satırda) bulalım. Kesişim yoluyla atamayı ararız, bu = 0,3040.

Dakika değerleri altı dakikalık aralıklarla belirtilir, ihtiyacımız olan değer tam olarak bu aralığın içine düşerse ne yapmalıyız. 44 dakika alalım ama tabloda sadece 42 var. 42'yi baz alıyoruz ve sağ taraftaki ek sütunları kullanarak 2. değişikliği alıp 0,3040 + 0,0006'yı ekliyoruz ve 0,3046 elde ediyoruz.

Günah 47 dakika ile 48 dakikayı esas alıyoruz ve bundan 1 düzeltme çıkarıyoruz yani 0,3057 - 0,0003 = 0,3054

Cos'u hesaplarken sin'e benzer şekilde çalışıyoruz, sadece tablonun en alt sırasını baz alıyoruz. Örneğin cos 20 0 = 0,9397

90 0'a kadar olan tg açısı ve küçük açılı cot değerleri doğrudur ve bunlarda herhangi bir düzeltme yoktur. Örneğin, tg 78 0 37dk = 4,967'yi bulun


ve ctg 20 0 13 dk = 25,83

Temel trigonometrik tablolara baktık. Bu bilgilerin sizin için son derece yararlı olduğunu umuyoruz. Tablolarla ilgili sorularınız varsa yorumlara yazmayı unutmayın!

Not: Duvar tamponları - duvarları korumak için tampon paneli (http://www.spi-polymer.ru/otboyniki/)

Basitçe söylemek gerekirse bunlar, özel bir tarife göre suda pişirilen sebzelerdir. İki başlangıç ​​​​bileşenini (sebze salatası ve su) ve bitmiş sonucu - pancar çorbasını ele alacağım. Geometrik olarak bir tarafı marulu, diğer tarafı suyu temsil eden bir dikdörtgen gibi düşünülebilir. Bu iki tarafın toplamı pancar çorbasını gösterecektir. Böyle bir "pancar çorbası" dikdörtgeninin köşegeni ve alanı tamamen matematiksel kavramlardır ve asla pancar çorbası tariflerinde kullanılmaz.


Marul ve su matematiksel açıdan nasıl pancar çorbasına dönüşür? İki doğru parçasının toplamı nasıl trigonometri olabilir? Bunu anlamak için doğrusal açısal fonksiyonlara ihtiyacımız var.


Matematik ders kitaplarında doğrusal açısal fonksiyonlar hakkında hiçbir şey bulamazsınız. Ama onlar olmadan matematik olamaz. Doğa kanunları gibi matematik kanunları da onların varlığını bilsek de bilmesek de işlerler.

Doğrusal açısal fonksiyonlar toplama yasalarıdır. Cebirin nasıl geometriye, geometrinin de trigonometriye dönüştüğünü görün.

Doğrusal açısal fonksiyonlar olmadan yapmak mümkün mü? Bu mümkün çünkü matematikçiler hâlâ onlarsız da idare edebiliyorlar. Matematikçilerin püf noktası, bize her zaman yalnızca kendilerinin nasıl çözeceklerini bildikleri problemleri anlatmaları ve çözemedikleri problemler hakkında asla konuşmamalarıdır. Bakmak. Toplamanın ve bir terimin sonucunu biliyorsak, diğer terimi bulmak için çıkarma işlemini kullanırız. Tüm. Diğer sorunları bilmiyoruz ve bunları nasıl çözeceğimizi de bilmiyoruz. Yalnızca toplama işleminin sonucunu biliyorsak ve her iki terimi de bilmiyorsak ne yapmalıyız? Bu durumda toplama işleminin sonucunun doğrusal açısal fonksiyonlar kullanılarak iki terime ayrıştırılması gerekir. Daha sonra bir terimin ne olabileceğini seçiyoruz ve doğrusal açısal fonksiyonlar ikinci terimin ne olması gerektiğini gösteriyor, böylece toplama işleminin sonucu tam olarak ihtiyacımız olan şey oluyor. Bu tür terim çiftlerinden sonsuz sayıda olabilir. Günlük yaşamda toplamı ayrıştırmadan gayet iyi geçiniyoruz; çıkarma bizim için yeterli. Ancak doğa kanunları üzerine yapılan bilimsel araştırmalarda, bir toplamı bileşenlerine ayırmak çok yararlı olabilir.

Matematikçilerin bahsetmekten hoşlanmadığı bir başka toplama kanunu (hilelerinden bir diğeri), terimlerin aynı ölçü birimlerine sahip olmasını gerektirir. Salata, su ve pancar çorbası için bunlar ağırlık, hacim, değer veya ölçü birimi olabilir.

Şekil matematik için iki seviyeli farkı göstermektedir. Birinci düzey, belirtilen sayılar alanındaki farklılıklardır. A, B, C. Matematikçilerin yaptığı da budur. İkinci düzey, köşeli parantez içinde gösterilen ve harfle gösterilen ölçü birimleri alanındaki farklılıklardır. sen. Fizikçilerin yaptığı da budur. Üçüncü seviyeyi, yani tanımlanan nesnelerin alanındaki farklılıkları anlayabiliriz. Farklı nesneler aynı sayıda aynı ölçü birimine sahip olabilir. Bunun ne kadar önemli olduğunu pancar çorbası trigonometrisi örneğinde görebiliriz. Farklı nesneler için aynı birim tanımına alt simgeler eklersek, belirli bir nesneyi tam olarak hangi matematiksel niceliğin tanımladığını ve bunun zaman içinde veya eylemlerimiz nedeniyle nasıl değiştiğini söyleyebiliriz. Mektup K Suyu harfle belirteceğim S Salatayı bir harfle belirleyeceğim B- borsch. Pancar çorbası için doğrusal açısal fonksiyonlar böyle görünecek.

Suyun bir kısmını ve salatanın bir kısmını alırsak, hepsi birlikte bir porsiyon pancar çorbasına dönüşecektir. Burada pancar çorbasına biraz ara vermenizi ve uzak çocukluğunuzu hatırlamanızı öneririm. Tavşanlarla ördekleri bir araya getirmenin bize nasıl öğretildiğini hatırlıyor musun? Kaç hayvan olacağını bulmak gerekiyordu. O zaman bize ne yapmamız öğretildi? Ölçü birimlerini sayılardan ayırmamız ve sayıları toplamamız öğretildi. Evet, herhangi bir sayı başka bir sayıya eklenebilir. Bu, modern matematiğin otizmine giden doğrudan bir yoldur - bunu anlaşılmaz bir şekilde, neden, anlaşılmaz bir şekilde yapıyoruz ve bunun gerçeklikle nasıl ilişkili olduğunu çok az anlıyoruz, üç fark seviyesi nedeniyle, matematikçiler yalnızca bir tanesiyle çalışırlar. Bir ölçü biriminden diğerine nasıl geçileceğini öğrenmek daha doğru olacaktır.

Tavşanlar, ördekler ve küçük hayvanlar parça parça sayılabilir. Farklı nesneler için ortak bir ölçü birimi, onları bir araya toplamamıza olanak tanır. Bu sorunun çocuk versiyonu. Yetişkinler için de benzer bir soruna bakalım. Tavşanları ve parayı eklediğinizde ne elde edersiniz? Burada iki çözüm sunabiliriz.

İlk seçenek. Tavşanların piyasa değerini belirliyoruz ve bunu mevcut para miktarına ekliyoruz. Servetimizin toplam değerini parasal olarak aldık.

İkinci seçenek. Elimizdeki banknot sayısına tavşan sayısını da ekleyebilirsiniz. Taşınır malların miktarını parça halinde alacağız.

Gördüğünüz gibi aynı toplama kanunu farklı sonuçlar elde etmenize olanak sağlıyor. Her şey tam olarak ne bilmek istediğimize bağlı.

Ama hadi pancar çorbamıza geri dönelim. Artık doğrusal açısal fonksiyonların farklı açı değerleri için ne olacağını görebiliriz.

Açı sıfırdır. Salatamız var ama suyumuz yok. Pancar çorbası pişiremiyoruz. Pancar çorbası miktarı da sıfırdır. Bu, sıfır pancar çorbasının sıfır suya eşit olduğu anlamına gelmez. Sıfır salata ile sıfır pancar çorbası olabilir (dik açı).


Şahsen benim için bu, şu gerçeğin ana matematiksel kanıtıdır. Sıfır, eklendiğinde sayıyı değiştirmez. Bunun nedeni, yalnızca bir terim varsa ve ikinci terim eksikse toplamanın kendisinin imkansız olmasıdır. Bunu istediğiniz gibi hissedebilirsiniz, ancak unutmayın - sıfırla yapılan tüm matematiksel işlemler matematikçiler tarafından icat edilmiştir, bu yüzden mantığınızı bir kenara bırakın ve matematikçiler tarafından icat edilen tanımları aptalca tıkıştırın: "sıfıra bölmek imkansızdır", "herhangi bir sayının çarpımı" sıfır sıfıra eşittir”, “delme noktası sıfırın ötesinde” ve diğer saçmalıklar. Sıfırın bir sayı olmadığını bir kez hatırlamak yeterlidir ve bir daha asla sıfırın doğal sayı olup olmadığı sorusuyla karşılaşmazsınız çünkü böyle bir soru tüm anlamını yitirir: Sayı olmayan bir şey nasıl sayı olarak kabul edilebilir? ? Bu, görünmez bir rengin hangi renk olarak sınıflandırılması gerektiğini sormak gibidir. Bir sayıya sıfır eklemek, orada olmayan boyayla resim yapmakla aynı şeydir. Kuru bir fırça salladık ve herkese “boyama yaptık” dedik. Ama biraz dalıyorum.

Açı sıfırdan büyük ama kırk beş dereceden az. Çok fazla marulumuz var ama yeterli suyumuz yok. Sonuç olarak kalın pancar çorbası elde edeceğiz.

Açı kırk beş derecedir. Eşit miktarda su ve salatamız var. Bu mükemmel pancar çorbası (affet beni şefler, bu sadece matematik).

Açı kırk beş dereceden büyük, ancak doksan dereceden azdır. Bol suyumuz ve az salatamız var. Sıvı pancar çorbası alacaksınız.

Sağ açı. Bizim suyumuz var. Bir zamanlar salatayı işaretleyen çizginin açısını ölçmeye devam ettiğimizde, salatadan geriye kalan tek şey anılardır. Pancar çorbası pişiremiyoruz. Pancar çorbası miktarı sıfırdır. Bu durumda tutun ve elinizde su varken için)))

Burada. Bunun gibi bir şey. Burada fazlasıyla uygun olacak başka hikayeler anlatabilirim.

İki arkadaşın ortak bir işte hisseleri vardı. Birini öldürdükten sonra her şey diğerine gitti.

Gezegenimizde matematiğin ortaya çıkışı.

Bütün bu hikayeler matematik dilinde doğrusal açısal fonksiyonlar kullanılarak anlatılıyor. Başka bir zaman size bu fonksiyonların matematiğin yapısındaki gerçek yerini göstereceğim. Bu arada pancar çorbası trigonometrisine dönelim ve projeksiyonları ele alalım.

26 Ekim 2019 Cumartesi

7 Ağustos 2019 Çarşamba

Konuşmayı sonlandırırken sonsuz bir kümeyi düşünmemiz gerekiyor. Mesele şu ki, "sonsuzluk" kavramı, bir boa yılanının bir tavşanı etkilemesi gibi matematikçileri de etkiliyor. Sonsuzluğun titreten dehşeti matematikçileri sağduyudan yoksun bırakıyor. İşte bir örnek:

Orijinal kaynak bulunur. Alfa gerçek sayı anlamına gelir. Yukarıdaki ifadelerde yer alan eşittir işareti, sonsuza bir sayı veya sonsuz eklediğinizde hiçbir şeyin değişmeyeceğini, sonucun aynı sonsuz olacağını belirtir. Örnek olarak sonsuz doğal sayılar kümesini alırsak, dikkate alınan örnekler şu şekilde temsil edilebilir:

Matematikçiler haklı olduklarını açıkça kanıtlamak için birçok farklı yöntem geliştirdiler. Şahsen ben tüm bu yöntemlere teflerle dans eden şamanlar gibi bakıyorum. Esasen, bunların hepsi ya bazı odaların boş olması ve yeni misafirlerin taşınması ya da bazı ziyaretçilerin misafirlere yer açmak için koridora atılması (çok insani bir şekilde) gerçeğine dayanıyor. Bu tür kararlara ilişkin görüşlerimi Sarışın hakkında fantastik bir hikaye şeklinde sundum. Benim mantığım neye dayanıyor? Sonsuz sayıda ziyaretçinin yerini değiştirmek sonsuz miktarda zaman alır. İlk odayı bir misafir için boşalttıktan sonra, ziyaretçilerden biri, zamanın sonuna kadar her zaman koridor boyunca kendi odasından diğerine yürüyecektir. Zaman faktörü elbette aptalca göz ardı edilebilir ama bu “hiçbir kanun aptallar için yazılmaz” kategorisinde olacaktır. Her şey ne yaptığımıza bağlı: gerçekliği matematiksel teorilere göre ayarlamak veya tam tersi.

“Sonsuz otel” nedir? Sonsuz otel, kaç oda dolu olursa olsun her zaman herhangi bir sayıda boş yatağa sahip olan bir oteldir. Sonsuz "ziyaretçi" koridorundaki tüm odalar doluysa, "misafir" odalarının bulunduğu başka bir sonsuz koridor daha vardır. Bu tür koridorlardan sonsuz sayıda olacak. Üstelik “sonsuz otel”, sonsuz sayıda Tanrının yarattığı sonsuz sayıda evrende, sonsuz sayıda gezegende, sonsuz sayıda binada, sonsuz sayıda kata sahiptir. Matematikçiler sıradan günlük problemlerden uzaklaşamazlar: Her zaman tek bir Tanrı-Allah-Buda vardır, tek bir otel vardır, tek bir koridor vardır. Yani matematikçiler otel odalarının seri numaralarıyla hokkabazlık yaparak bizi "imkansızı itmenin" mümkün olduğuna ikna etmeye çalışıyorlar.

Akıl yürütmemin mantığını size sonsuz doğal sayılar kümesi örneğini kullanarak göstereceğim. Öncelikle çok basit bir soruyu yanıtlamanız gerekiyor: Kaç tane doğal sayı kümesi var - bir mi yoksa daha fazla mı? Sayıları kendimiz icat ettiğimiz için bu sorunun doğru bir cevabı yok; doğada sayılar yoktur. Evet, Doğa sayma konusunda harikadır ama bunun için bizim bilmediğimiz diğer matematiksel araçları kullanır. Doğanın ne düşündüğünü başka zaman anlatacağım. Sayıları icat ettiğimizden beri, kaç tane doğal sayı kümesinin olacağına kendimiz karar vereceğiz. Gerçek bilim adamlarına yakışır şekilde her iki seçeneği de ele alalım.

Seçenek bir. Rafta sakin bir şekilde duran tek bir doğal sayı dizisi "bize verilsin". Bu seti raftan alıyoruz. İşte bu, rafta başka doğal sayı kalmadı ve onları alacak yer yok. Zaten elimizde olduğundan bu sete bir tane ekleyemiyoruz. Ya gerçekten istersen? Sorun değil. Almış olduğumuz setten bir adet alıp rafa geri koyabiliriz. Bundan sonra raftan bir tane alıp elimizde kalanlara ekleyebiliriz. Sonuç olarak yine sonsuz bir doğal sayılar kümesi elde edeceğiz. Tüm manipülasyonlarımızı şu şekilde yazabilirsiniz:

Eylemleri cebirsel gösterimde ve küme teorisi gösteriminde, kümenin elemanlarının ayrıntılı bir listesiyle birlikte yazdım. Alt simge, tek ve tek bir doğal sayı kümesine sahip olduğumuzu gösterir. Doğal sayılar kümesinin ancak ondan bir çıkarılıp aynı birim eklenirse değişmeden kalacağı ortaya çıktı.

İkinci Seçenek. Rafımızda birçok farklı sonsuz doğal sayı kümesi var. Pratik olarak ayırt edilemez olmalarına rağmen - FARKLI olduğunu vurguluyorum. Bu setlerden birini alalım. Daha sonra başka bir doğal sayı kümesinden birini alıp daha önce almış olduğumuz kümeye ekliyoruz. İki doğal sayı kümesini bile toplayabiliriz. Elde ettiğimiz şey bu:

"Bir" ve "iki" alt simgeleri bu elemanların farklı kümelere ait olduğunu gösterir. Evet sonsuz bir kümeye bir eklerseniz sonuç yine sonsuz küme olur ama orijinal kümeyle aynı olmaz. Bir sonsuz kümeye başka bir sonsuz küme eklerseniz sonuç, ilk iki kümenin elemanlarından oluşan yeni bir sonsuz küme olur.

Doğal sayılar kümesi sayma için, cetvelin ölçme için kullanılmasıyla aynı şekilde kullanılır. Şimdi cetvele bir santimetre eklediğinizi hayal edin. Bu orijinaline eşit olmayan farklı bir çizgi olacaktır.

Benim mantığımı kabul edebilir veya kabul etmeyebilirsiniz; bu sizin kendi işinizdir. Ancak eğer matematik problemleriyle karşılaşırsanız, nesiller boyu matematikçilerin izlediği yanlış akıl yürütme yolunu takip edip etmediğinizi düşünün. Sonuçta, matematik çalışmak her şeyden önce içimizde istikrarlı bir düşünce stereotipi oluşturur ve ancak o zaman zihinsel yeteneklerimize katkıda bulunur (veya tam tersine bizi özgür düşünceden mahrum bırakır).

pozg.ru

4 Ağustos 2019 Pazar

Hakkında bir makalenin ekini bitiriyordum ve Wikipedia'da şu harika metni gördüm:

Şöyle okuyoruz: "... Babil matematiğinin zengin teorik temeli bütünsel bir karaktere sahip değildi ve ortak bir sistem ve kanıt tabanından yoksun bir dizi farklı tekniğe indirgenmişti."

Vay! Ne kadar akıllıyız ve başkalarının eksikliklerini ne kadar iyi görebiliyoruz. Modern matematiğe aynı bağlamda bakmak bizim için zor mu? Yukarıdaki metni biraz değiştirerek, kişisel olarak aşağıdakileri elde ettim:

Modern matematiğin zengin teorik temeli bütünsel değildir ve ortak bir sistem ve kanıt tabanından yoksun, birbirinden farklı bölümlere indirgenmiştir.

Sözlerimi doğrulamak için fazla uzağa gitmeyeceğim; matematiğin diğer birçok dalının dilinden ve kurallarından farklı bir dili ve kuralları var. Matematiğin farklı dallarındaki aynı isimler farklı anlamlara gelebilir. Bir dizi yayını modern matematiğin en bariz hatalarına adamak istiyorum. Yakında görüşürüz.

3 Ağustos 2019 Cumartesi

Bir küme alt kümelere nasıl bölünür? Bunu yapmak için seçilen setin bazı öğelerinde mevcut olan yeni bir ölçü birimi girmeniz gerekir. Bir örneğe bakalım.

Bolluğumuz olsun A dört kişiden oluşuyor. Bu set “kişiler” esas alınarak oluşturulmuştur. Bu setin elemanlarını harfle gösterelim. A numaralı alt simge, bu setteki her kişinin seri numarasını gösterecektir. Yeni bir ölçü birimi olan "cinsiyet"i tanıtalım ve bunu harfle belirtelim B. Cinsel özellikler tüm insanlarda doğal olduğundan, kümenin her bir öğesini çarpıyoruz A cinsiyete dayalı B. “İnsanlar” grubumuzun artık “cinsiyet özelliklerine sahip insanlar” kümesi haline geldiğine dikkat edin. Bundan sonra cinsel özellikleri erkeklere ayırabiliriz. BM ve kadınların siyah kadın cinsel özellikler. Şimdi matematiksel bir filtre uygulayabiliriz: Hangisi olursa olsun bu cinsel özelliklerden birini seçiyoruz: erkek ya da kadın. Bir kişide varsa onu bir ile çarparız, eğer böyle bir işaret yoksa sıfırla çarparız. Ve sonra normal okul matematiğini kullanıyoruz. Bak ne oldu.

Çarpma, azaltma ve yeniden düzenlemeden sonra iki alt küme elde ettik: Erkeklerin alt kümesi BM ve kadınların bir alt kümesi siyah. Matematikçiler küme teorisini pratikte uygularken yaklaşık olarak aynı şekilde mantık yürütürler. Ancak bize ayrıntıları söylemiyorlar, ancak bize nihai sonucu veriyorlar: "birçok insan, erkeklerden ve kadınlardan oluşan bir alt gruptan oluşuyor." Doğal olarak aklınıza şu soru gelebilir: Yukarıda özetlenen dönüşümlerde matematik ne kadar doğru uygulandı? Sizi temin ederim ki aslında her şey doğru yapıldı; aritmetiğin, Boole cebirinin ve matematiğin diğer dallarının matematiksel temellerini bilmek yeterlidir. Ne olduğunu? Başka bir zaman sana bundan bahsedeceğim.

Süper kümelere gelince, bu iki kümenin elemanlarında bulunan ölçü birimini seçerek iki kümeyi tek bir süper kümede birleştirebilirsiniz.

Gördüğünüz gibi ölçü birimleri ve sıradan matematik, küme teorisini geçmişin kalıntısı haline getiriyor. Küme teorisinde her şeyin yolunda olmadığının bir işareti, matematikçilerin küme teorisi için kendi dillerini ve gösterimlerini geliştirmiş olmalarıdır. Matematikçiler bir zamanlar şamanların yaptığı gibi hareket ediyorlardı. Yalnızca şamanlar "bilgilerini" nasıl "doğru" şekilde uygulayacaklarını bilirler. Bize bu “bilgiyi” öğretiyorlar.

Sonuç olarak size matematikçilerin nasıl manipüle ettiğini göstermek istiyorum.

7 Ocak 2019 Pazartesi

MÖ beşinci yüzyılda, antik Yunan filozofu Elea'lı Zenon, en ünlüsü "Aşil ve Kaplumbağa" aporia'sı olan ünlü aporialarını formüle etti. İşte kulağa nasıl geliyor:

Diyelim ki Aşil kaplumbağadan on kat daha hızlı koşuyor ve onun bin adım gerisinde. Aşil'in bu mesafeyi koştuğu süre boyunca kaplumbağa aynı yönde yüz adım kadar sürünecektir. Aşil yüz adım koştuğunda kaplumbağa on adım daha sürünür ve bu böyle devam eder. Bu süreç sonsuza kadar devam edecek, Aşil kaplumbağaya asla yetişemeyecek.

Bu akıl yürütme sonraki tüm nesiller için mantıksal bir şok oldu. Aristoteles, Diogenes, Kant, Hegel, Hilbert... Hepsi öyle ya da böyle Zeno'nun açmazını değerlendirdiler. Şok o kadar güçlüydü ki " ... tartışmalar bugüne kadar devam ediyor; bilim camiası paradoksların özü hakkında henüz ortak bir görüşe varamadı ... konunun incelenmesine matematiksel analiz, küme teorisi, yeni fiziksel ve felsefi yaklaşımlar dahil edildi. ; hiçbiri soruna genel kabul görmüş bir çözüm olmadı..."[Wikipedia, "Zeno'nun Aporia'sı". Herkes kandırıldıklarını anlıyor ama kimse aldatmanın nelerden oluştuğunu anlamıyor.

Matematiksel bir bakış açısından Zeno, çıkmazında nicelikten niceliğe geçişi açıkça gösterdi. Bu geçiş, kalıcı olanların yerine uygulamayı ima etmektedir. Anladığım kadarıyla değişken ölçü birimlerini kullanmaya yönelik matematiksel aparat ya henüz geliştirilmedi ya da Zeno'nun açmazına uygulanmadı. Her zamanki mantığımızı uygulamak bizi tuzağa düşürür. Biz, düşüncenin ataleti nedeniyle, karşılıklı değere sabit zaman birimleri uyguluyoruz. Fiziksel açıdan bakıldığında bu, Aşil'in kaplumbağaya yetiştiği anda tamamen durana kadar zamanın yavaşlaması gibi görünüyor. Zaman durursa Aşil kaplumbağadan daha fazla koşamaz.

Her zamanki mantığımızı tersine çevirirsek her şey yerli yerine oturur. Aşil sabit hızla koşar. Yolunun sonraki her bölümü bir öncekinden on kat daha kısadır. Buna göre, bunun üstesinden gelmek için harcanan süre bir öncekine göre on kat daha azdır. Bu duruma “sonsuzluk” kavramını uygularsak, “Aşil kaplumbağaya sonsuz hızla yetişecek” demek doğru olur.

Bu mantıksal tuzaktan nasıl kaçınılır? Sabit zaman birimlerinde kalın ve karşılıklı birimlere geçmeyin. Zeno'nun dilinde şöyle görünür:

Aşil'in bin adım koşması gereken sürede kaplumbağa aynı yönde yüz adım koşacaktır. Bir sonraki birinciye eşit zaman aralığında Aşil bin adım daha koşacak ve kaplumbağa yüz adım daha sürünecektir. Artık Aşil kaplumbağanın sekiz yüz adım ilerisindedir.

Bu yaklaşım, herhangi bir mantıksal paradoks olmaksızın gerçekliği yeterince tanımlamaktadır. Fakat bu soruna tam bir çözüm değildir. Einstein'ın ışık hızının karşı konulmazlığıyla ilgili açıklaması Zeno'nun "Aşil ve Kaplumbağa" açmazına çok benziyor. Hala bu sorunu incelememiz, yeniden düşünmemiz ve çözmemiz gerekiyor. Ve çözüm sonsuz büyük sayılarda değil, ölçü birimlerinde aranmalıdır.

Zeno'nun bir başka ilginç açmazı da uçan bir oktan bahseder:

Uçan ok, zamanın her anında hareketsiz olduğundan hareketsizdir ve zamanın her anında hareketsiz olduğundan daima hareketsizdir.

Bu açmazda, mantıksal paradoksun üstesinden çok basit bir şekilde gelinir - uçan bir okun, uzayın farklı noktalarında her an hareketsiz olduğunu, bunun aslında bir hareket olduğunu açıklığa kavuşturmak yeterlidir. Burada bir başka noktaya dikkat çekmek gerekiyor. Yoldaki bir arabanın bir fotoğrafından ne hareketinin gerçekliğini ne de ona olan mesafeyi belirlemek imkansızdır. Bir arabanın hareket edip etmediğini belirlemek için aynı noktadan farklı zamanlarda çekilmiş iki fotoğrafa ihtiyacınız vardır, ancak onlara olan mesafeyi belirleyemezsiniz. Bir arabaya olan mesafeyi belirlemek için, uzayın farklı noktalarından aynı anda çekilmiş iki fotoğrafa ihtiyacınız vardır, ancak bunlardan hareketin gerçekliğini belirleyemezsiniz (tabii ki hesaplamalar için yine de ek verilere ihtiyacınız var, trigonometri size yardımcı olacaktır) ). Özellikle dikkat çekmek istediğim şey, zamandaki iki nokta ile uzaydaki iki noktanın birbirine karıştırılmaması gereken farklı şeyler olmasıdır, çünkü bunlar araştırma için farklı fırsatlar sunar.
Size süreci bir örnekle göstereceğim. "Sivilce içindeki kırmızı katı" seçiyoruz - bu bizim "bütünümüz". Aynı zamanda bunların fiyonklu olduğunu ve fiyonksuz olduğunu da görüyoruz. Bundan sonra “bütünün” bir kısmını seçip “yaylı” bir set oluşturuyoruz. Şamanlar, yerleşik teorilerini gerçekliğe bağlayarak yiyeceklerini bu şekilde elde ederler.

Şimdi küçük bir numara yapalım. “Fiyonklu sivilceli katı”yı alalım ve bu “bütünleri” kırmızı unsurları seçerek renklerine göre birleştirelim. Bir sürü "kırmızı"mız var. Şimdi son soru: Sonuçta ortaya çıkan “fiyonklu” ve “kırmızı” kümeler aynı küme mi, yoksa iki farklı küme mi? Bunun cevabını yalnızca şamanlar biliyor. Daha doğrusu kendileri hiçbir şey bilmiyorlar ama dedikleri gibi öyle olacak.

Bu basit örnek, konu gerçekliğe geldiğinde küme teorisinin tamamen işe yaramaz olduğunu gösteriyor. İşin sırrı nedir? "Sivilce ve fiyonklu kırmızı katı" bir set oluşturduk. Oluşum dört farklı ölçü biriminde gerçekleşti: renk (kırmızı), sağlamlık (katı), pürüzlülük (sivilceli), dekorasyon (yaylı). Yalnızca bir dizi ölçü birimi, gerçek nesneleri matematik dilinde yeterince tanımlamamıza izin verir.. Görünüşe göre bu.

Farklı endekslere sahip "a" harfi, farklı ölçü birimlerini gösterir. Başlangıç ​​aşamasında “bütün”ün ayırt edildiği ölçü birimleri parantez içinde vurgulanmıştır. Setin oluşturulduğu ölçü birimi parantezlerden çıkarılır. Son satır nihai sonucu gösterir - kümenin bir öğesi. Gördüğünüz gibi, bir küme oluşturmak için ölçü birimlerini kullanırsak sonuç, eylemlerimizin sırasına bağlı değildir. Ve bu matematiktir, şamanların teflerle dansı değil. Şamanlar, ölçüm birimlerinin onların "bilimsel" cephaneliğinin bir parçası olmaması nedeniyle bunun "açık" olduğunu savunarak "sezgisel olarak" aynı sonuca varabilirler.

Ölçü birimlerini kullanarak bir seti bölmek veya birkaç seti tek bir süper sette birleştirmek çok kolaydır. Bu sürecin cebirine daha yakından bakalım.


Bu makale şunları içerir: sinüs, kosinüs, teğet ve kotanjant tabloları. İlk olarak, trigonometrik fonksiyonların temel değerlerinin bir tablosunu, yani 0, 30, 45, 60, 90, ..., 360 derecelik açıların sinüs, kosinüs, teğet ve kotanjant tablosunu sunacağız ( 0, π/6, π/4, π/3, π/2, …, 2π radyan). Bundan sonra V. M. Bradis'in sinüs ve kosinüs tablosunun yanı sıra teğet ve kotanjant tablosunu vereceğiz ve trigonometrik fonksiyonların değerlerini bulurken bu tabloların nasıl kullanılacağını göstereceğiz.

Sayfada gezinme.

0, 30, 45, 60, 90, ... derecelik açılar için sinüs, kosinüs, teğet ve kotanjant tablosu

Kaynakça.

  • Cebir: Ders Kitabı 9. sınıf için. ortalama okul / Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky. - M .: Eğitim, 1990. - 272 s.: - ISBN 5-09-002727-7.
  • Bashmakov M. I. Cebir ve analizin başlangıcı: Ders kitabı. 10-11 sınıflar için. ortalama okul - 3. baskı. - M.: Eğitim, 1993. - 351 s.: hasta. - ISBN 5-09-004617-4.
  • Cebir ve analizin başlangıcı: Proc. 10-11 sınıflar için. Genel Eğitim kurumlar / A.N. Kolmogorov, A.M. Abramov, Yu.P. Dudnitsyn ve diğerleri; Ed. A. N. Kolmogorov - 14. baskı - M.: Eğitim, 2004. - 384 s.: - ISBN 5-09-013651-3.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı): Proc. ödenek.- M.; Daha yüksek okul, 1984.-351 s., hasta.
  • Bradis V.M. Dört basamaklı matematik tabloları: Genel eğitim için. ders kitabı kuruluşlar. - 2. baskı. - M.: Bustard, 1999.- 96 s.: hasta. ISBN 5-7107-2667-2

Kapalı